

Reconfiguring Distributed
Computations

(Note 2014: this document has been compiled from separate files in a 1990 version of Word.

There will be the occasional glitch in Symbol characters. Take page numbers and

header/footer information with a pinch of salt.)

Timothy Paul James Gerard Kindberg

The Polytechnic of Central London

A dissertation submitted in partial fulfilment of the requirements

of the Council for National Academic Awards

for the degree of

Doctor of Philosophy

October 1990

 i

Abstract

This dissertation presents a practical model for programming reconfigurable

distributed computations (RDCs). The model is supported by an operating

environment, Equus, which has been implemented on a multiprocessor computer

system. This environment supports the concurrent execution of multiple RDCs, and

RDCs can act as servers to client processes belonging to other RDCs.

RDCs can change their resource usage and therefore their configuration between

run-times and/or during their run-time. They do so for a variety of reasons, and

range from parallel applications that exploit a computer which is freed from another

use and becomes available to them during their run-time, to server computations

which expand their configuration to an extra computer when client demand reaches

a threshold value.

The programming model provides primitives to establish an RDC and then

reconfigure it by changing its process population, reconnecting its processes and

migrating them between machines. The dissertation presents the design of the

model's structural components and reconfiguration mechanisms, and shows their

utility both for stand-alone applications and in particular for server RDCs with

independent clients.

The dissertation discusses the transparency of reconfigurations with respect to

application algorithms, and analyses general requirements of an RDC's application

which must be met when reconfigurations are applied to it. Transparency is a

requirement in the case of clients connected to multiple-process server RDCs which

reconfigure to change the association between client and server processes. The

dissertation shows the contribution of the model in making this achievable without

interaction with the clients.

The dissertation gives the main features of the design of the kernel which is the

major component of the implementation.

 ii

Acknowledgements

First and foremost, I should like to acknowledge the support of my supervisor,
Professor Yakup Paker. Yakup has always shown his enthusiasm for my work and
has given me much encouragement and guidance. Writing this dissertation
sometimes seemed like climbing a mountain, and it is with many thanks to Yakup
and his friendship that I made it this far.

My colleague and friend, Ali Sahiner, has worked on the Wormos and Equus
projects almost as long as I have. Ali contributed to the kernel implementations, he
has developed demanding applications, he has been a constructive critic, and I have
very much enjoyed working with him.

Thanks also go to my brother, Chris, and my second supervisor, Dr. Jean Bacon,
for their helpful criticisms and for their influential words of encouragement.
Amongst members at the Computer Science Department of Queen Mary and
Westfield College, University of London, I am especially grateful to Professor
Richard Bornat, Jean Dollimore and Professor George Coulouris for giving me their
support over the last few months.

Andrew Sherman did most of the implementation work on memory
management and the pool manager, and Jack Leung on the kernel's time daemon
and a prototype name service. Both became good friends. I wish that we could
have been a team together for longer. Tony Deacon prototyped the code for stream
space during his time at the short-lived Zebra Parallel. Martin Farncombe, Richard
Harris and Debbi Lane tried with the rest of us to make Equus a commercial success.
Notable for their contributions as Equus users have been Esin Onbasioglu, who has
been investigating load balancing, and Matti Hiltunen and Philippe Garat, whose
fault-tolerant and image processing applications provided valuable feedback for the
system design.

Thanks to my mother, to Sal, Maria and Top and the rest of my family in Canada
for their faith in me. My friends (especially Angelika) have all been a source of
support and encouragement throughout, as were Rosemary and Maggie and the
WPF group.

Last but not least, thank you Alice for helping me out so that I could concentrate,
and thanks to both you and Gene for putting up with my preoccupations at home.
It must have seemed that it might never end. I hope that I shall be able to help out
in turn if either of you finds a mountain to climb.

The work presented in this dissertation was funded in part by the Science and
Engineering Research Council under grant number GR/C69214 (Self-managing
Distributed Processes), and by a Department of Trade and Industry Support for
Innovations grant (the Wormos Operating System).

 iii

Trademarks
UNIX is a registered trademark of AT&T.
MicroVAX-II, VAX-11/750 and Firefly are all trademarks of the Digital Equipment
Corporation.
Sun-2, Sun-3 are trademarks of Sun Microsystems, Inc.

For Hunky Dory

 v

List of Chapters and Appendices

Research Problem... 1 Introduction

 2 Background

Main Chapters... 3 RDCs

 4 Communications

 5 Configuration & Propagation

 6 Reconfiguring Clients and Servers

 7 Control & Migration

 8 The Kernel

Conclusion... 9 Conclusion

Appendices... A Performance

 B Equus Calls

 vi

Table of Contents
 Glossary xi

1 Introduction 1

1.1 Reconfiguration ... 2

1.1.1 Definition of Configuration ... 3

1.1.2 Reconfigurability ... 5

1.2 RDCs ... 6

1.2.1 Reconfiguration Mechanisms .. 6

1.2.2 Transparency ... 7

1.3 The Implementation ... 8

1.4 Dissertation Overview ... 9

2 Background 11

2.1 Processor Pools .. 11

2.1.1 Purpose-built Pools ... 12

2.1.2 Idle Workstations .. 13

2.2 Distributed Programming Models ... 14

2.2.1 Loosely Coupled Processes ... 15

2.2.2 Approaches to Interaction ... 16

2.3 Systems with Reconfiguration .. 17

2.3.1 Language-based Systems ... 17

2.3.2 Distributed Operating Systems ... 23

2.4 The RDC Model ... 25

2.4.1 Design Decisions ... 25

2.4.2 Aspects of Reconfiguration.. 27

2.4.3 Discussion .. 31

2.5 Summary .. 33

3 RDCs 33

3.1 Modules and Incarnations ... 33

3.2 Incarnations ... 35

3.2.1 Creating an Incarnation ... 35

3.2.2 References .. 36

3.2.3 Events .. 38

3.3 Launching an RDC .. 38

3.4 Node Allocation .. 40

 Mapping ... 44

3.5 Summary .. 45

4 Communications 46

 vii

4.1 Message Passing Requirements .. 46

4.2 Invocations ... 47

4.3 Channels ... 48

4.3.1 Unicast Message Primitives ... 49

4.3.2 Multicast ... 50

4.4 Ports .. 52

4.4.1 Message Queues .. 53

4.4.2 Asynchronicity and Buffering ... 54

4.5 Buffer Handles ... 56

4.6 Sending References in Messages ... 57

4.7 Summary .. 58

5 Configuration & Propagation 60

5.1 Experience with the First Design .. 60

5.2 Establishing a Configuration ... 61

5.2.1 Setting Up the Text Processing RDC 61

5.2.2 Discussion .. 64

5.2.3 Dynamically Adding A Worker 65

5.3 Forking.. 66

5.4 Propagation .. 67

5.5 Stream Space .. 68

5.5.1 Stream Space and Initial Configuration 69

5.5.2 Operational Considerations .. 70

5.5.3 Caching ... 71

5.5.4 Monitoring Propagation .. 72

5.6 Summary .. 72

6 Reconfiguring Clients and Servers 74

6.1 Multiple-peer Servers ... 74

6.2 Mechanisms to Change the Receiver ... 76

6.2.1 Propagating Ports ... 78

6.2.2 Attaching Ports .. 80

6.2.3 Rebinding Streams .. 80

6.2.4 Moving the Message Queue .. 81

6.3 Application Requirements ... 83

6.3.1 The Conic Reconfiguration Criterion 85

6.3.2 Limitations of Quiescence .. 86

6.3.3 Server-Quiescence ... 87

6.4 Reconfiguring the Example RDCs .. 90

Dealing with Node Withdrawal 93

 viii

6.5 Summary .. 94

7 Control and Migration 95

7.1 Parents and Control Mechanisms ... 95

7.2 Support for the Pool Manager ... 97

7.2.1 Load balancing .. 97

7.2.2 Node Allocation .. 97

7.2.3 Monitoring ... 98

7.3 Termination and Dependency .. 100

 Dependency ... 100

7.4 Migration .. 101

7.4.1 Migration Semantics ... 101

7.4.2 Operational Considerations .. 102

7.4.3 The Freeze Time .. 104

7.4.4 The Migration Algorithm .. 104

7.4.5 Migration Performance .. 106

7.4.6 Comments on the Migration Implementation 108

7.5 Summary .. 109

8 The Kernel 110

8.1 Kernel Architecture .. 110

8.2 Local Incarnations ... 112

8.2.1 Ghost Processes ... 112

8.2.2 Other Features of Local Incarnations 114

8.3 Other System Processes .. 116

8.4 Communications ... 117

8.4.1 Delivery Mechanisms ... 117

8.4.2 Addressing ... 119

8.4.3 Locating a Kernel Port .. 120

8.4.4 Multicasting ... 121

8.5 Changing the Destination .. 122

8.5.1 Port Propagation ... 122

8.5.2 Port Attachment .. 125

8.5.3 Rebinding a Stream ... 126

8.5.4 Migration .. 127

8.6 Performance ... 127

8.7 Summary .. 131

9 Conclusion 134

9.1 Summary of Contributions .. 134

9.2 Further Work ... 137

 ix

 References 140

A Performance 148

A.1 Invocation Timings ... 149

A.2 Migration .. 155

A.3 Changing the Receiver ... 157

B Equus Calls 161

B.1 Definitions .. 161

B.2 Incarnation Creation ... 164

B.3 Stream Space .. 167

B.4 Communications ... 168

B.4.1 Message Passing .. 168

B.4.2 Data copying .. 170

B.4.3 Auxiliary Calls ... 170

B.5 Channels, Streams and Ports ... 171

B.6 Reconfiguring Communications ... 171

B.7 Control .. 172

B.8 Identification .. 174

B.9 Events and Software Interrupts .. 174

B.10 Other Calls ... 177

 x

List of Tables

4.1 Invocation Primitives .. 50

4.2 Non-Invocation Communication Primitives.. 51

8.1 Performance of Request-reply Primitives .. 130

8.2 Overhead to Client Due to Communications Reconfigurations 132

A.1 Invocation Times Between Nodes ... 150

A.2 Invocation Times Between Incarnations at Same Node 154

A.3 Times to Copy Data Asynchronously Between Nodes 154

A.4 Migration Times ... 155

A.5 Communications Reconfiguration Measurement Results 158

 xi

List of Figures

1.1 Configuration = Structure + Mapping onto Nodes 4

2.1 Initial Configuration of Text Processing RDC 29

2.2 A Printer Server RDC with Clients .. 31

3.1 Main Program Declaration for an RDC Module 35

3.2 Launching an RDC ... 40

3.3 Contents of Node Descriptor File .. 42

3.4 Contents of Pool Users File ... 43

4.1 Invocations Take Place Using Streams and Ports Connected via Channel
 49

5.1 Initial Structure of Text Processing RDC .. 62

5.2 Data Structure Used to Declare Arguments and Interfaces............... 63

5.3 Code to Fork a Child ... 68

6.1 The Mappings Relating Clients to Server Peers 78

6.2 Three Mechanisms to Cause Invocation Messages to Arrive at a Different
Incarnation ... 80

6.3 Configuration with Two Printers .. 91

6.4 Manager Code to Integrate New Printer .. 92

7.1 Actions Performed to Achieve Incarnation Migration 108

8.1 Main Kernel Components ... 113

8.2 Local Incarnations and Their Interactions .. 115

8.3 Incarnation Address Space ... 117

8.4 The Algorithm Followed by a Recipient of a Propagated Port 125

8.5 Activating Propagation on Request from Recipient 126

8.6 Handling a Rebind Operation at the Current Receiver 129

A.1 Invocation Times Between Nodes (0-1k Extra Data) 151

A.2 Invocation Times Between Nodes (0-64k Extra Data) 152

A.3 Migration Times ... 156

 xii

Glossary

buffer handle A type of reference enabling the owner to read/write a

data segment in another incarnation's address space.

channel A structural component used to route messages

between incarnations.

clients and servers A server is a system-provided process or group of

processes in a distributed system. It provides a shared

facility such as access to a common resource, in

response to message-based requests from

independently created processes called clients.

configuration The disposition of structural components of a distributed

computation. The configuration of an RDC is its structure

plus the mapping of its incarnations onto underlying

nodes.

distributed computation A computation consisting of communicating processes

running at the nodes of a distributed system.

distributed system A collection of computers linked by a communications

network for sharing of resources and co-operative

working.

dynamic Performed at run-time; applied to configuring or

reconfiguring a distributed computation.

Equus The commercial name of the operating environment

which together with Unix supports the execution of

RDCs. Previously known as Wormos.

ghost A kernel process which handles operations and event

notifications for an incarnation.

incarnation A process belonging to an RDC; an executing image of a

module.

 xiii

incarnation handle A type of reference which enables the owner to migrate

an incarnation and control it in other ways.

invocation A basic message-based interaction between incarnations.

kernel The basic operating software resident at a computer in a

distributed system.

mapping The mapping of a set of incarnations is the function

giving each incarnation's current host node.

message A discrete unit of data passed between incarnations.

migration An incarnation is said to migrate when it is moved intact

between two nodes.

module A component of an RDC's program, used as a template

for creating incarnations; a unit of functional division.

node General term for a distinct computer in a distributed

system - from a basic processing element to a

workstation.

pincdata per-incarnation data. A collection of kernel-managed

data such as references pertaining to a single incarnation.

port A type of reference enabling an incarnation to receive

messages arriving over channels.

port handle A type of reference denoting a port and used for

reconfiguring its attachment to channels.

process The main unit of execution supported at a node. Unless

otherwise stated, a process is heavyweight: it has its

own address space, which may be shared by more than

one thread of execution. Processes in the RDC model

are called incarnations.

processor pool A collection of nodes in a distributed system whose

members are temporarily allocated to distributed

computations.

 xiv

propagation The transmission of a copy of a reference from one

incarnation to another.

RDC A dynamically configurable and reconfigurable

distributed computation belonging to the model

elaborated in this dissertation.

reconfiguration A set of changes applied to a distributed computation's

configuration.

reference A sealed data structure held by the kernel and owned

by an incarnation, which refers to a kernel-supported

entity such as an incarnation, and whose possession

enables protected access to it.

stream A type of reference enabling the possessor to perform

invocations over an attached channel.

stream handle A type of reference denoting a stream and used for

reconfiguring its attachment to channels.

stream space A repository into and out of which incarnations copy

references to achieve decoupled propagation.

structure The structure of an RDC is the relation of ownership of

streams and ports by the constituent incarnations, and the

relation of interconnection of these streams and ports

via channels.

transparency Something is transparent to a process if the process's

execution is semantically independent of it. The

"something" can be an event or change occurring to an

entity in the same system, or a property of a related

entity. In particular, a reconfiguration of a distributed

computation might or might not be transparent to a

constituent or client process.

 1

Chapter 1

Introduction

This dissertation presents a programming model for reconfigurable communicating

process computations, and their supporting operating environment which has been

implemented on a multiprocessor computer system. It argues that the model and

environment provide a practical and general framework within which solutions to

problems involving reconfiguration can be programmed. It argues for a model in

which distributed computations can dynamically establish and manage their own

configuration. This is because of application-specific dependencies on run-time

conditions – in particular, on the changing availability of computing resources.

The dissertation analyses the problems that arise when reconfigurable

computations act as servers to independent client computations. It focuses upon the

case of server computations consisting of multiple peer processes, between which

clients are re-connected. A separation between reconfigurations and application

algorithms cannot always be achieved, but the dissertation argues for – and the

model provides – reconfiguration mechanisms whose operations are transparent to

clients of these server computations. The dissertation develops, in relation to the

mechanisms of the model, a general set of requirements which must be met by

multiple-peer server applications, if reconfigurations affecting them and their clients

are to take place consistently.

This chapter introduces the problem in the context in which it was initially

investigated, by first considering schemes for dynamically allocating processing

resources to distributed computations. It then introduces the programming model,

and describes the computer systems on which the operating software has been

implemented. It goes on to outline how the rest of the dissertation is structured to

cover the topics at issue.

 2

1.1 Reconfiguration

With the advent of relatively cheap and yet increasingly powerful microprocessors,

many users have their day-to-day computing needs economically met by a personal

computer or workstation containing a single processor. Intensive applications such

as engineering or image-processing calculations are not uncommon, however, and

tend to demand more processing power than these computers can individually

provide.

When computers are connected as part of a distributed computer system, there

are two established means aimed at improving the performance of applications

through shared use of processing resources:

1] Use of a processor pool. The first scheme for sharing processors involves a

purpose-built pool of basic processors, each usually consisting of a single

processor card, with CPU, local memory and communications interface

[AMOEBA90]. The pool is separate to the users' individual computers or

terminals but accessible from them, and processors are allocated from the pool

as demands for extra resources arise. When a processor is finished with, it is

returned to the pool for further use.

2] Use of idle workstations. This scheme avoids buying extra hardware and

instead attempts to maximise the usage of existing workstation resources:

when an intensive application is to be run, an attempt is made to locate other

workstations on the network which are not in use or are under-utilised

[HAGMAN, NICHOL, WORMS]. Such workstations are regarded as

constituting a fluctuating pool whose members can be allocated to intensive

applications requiring them.

In both types of pool, computers or basic processors (henceforth collectively

referred to as nodes, whichever kind of distributed system they belong to) are

allocated to distributed computations dynamically – that is, at run-time. They are

also withdrawn dynamically. For example, withdrawal can be made when a user

logs back on to his or her workstation, or when a temporarily allocated node is

required for a more privileged user of a purpose-built pool. Multiple allocations

and withdrawals can be made from the pool during a single computation's run time,

as the level of competition for nodes varies.

 3

The extra processors acquired can be used to run application programs in

parallel. Of main concern to this dissertation are distributed computations, for which

many programming models have been developed. These are defined to be single

applications consisting of communicating processes distributed across a number of

interconnected machines without shared memory. A process is taken here to be the

main component of execution according to the particular model concerned.

Different models have different definitions of process, and some of these will be

described in Chapter 2. Communication takes different forms in different models,

but always involves a combination of synchronisation and/or data copying between

processes.

To utilise a node, one or more processes belonging to the distributed

computation are created there, each of which needs (in general) to be connected to

other processes in order to communicate with them. When a node is withdrawn in

the case of the Cambridge Distributed System's processor bank [CRAFT], processes

executing there are terminated after a notice period has elapsed. Other processes

should not continue to attempt to communicate with them there, and a strategy is

also required to recover from this withdrawal so that essential results are not lost.

In summary, node allocation and withdrawal imply the need to change the process

population and the interconnection of the processes, whilst maintaining the

application’s integrity.

1.1.1 Definition of Configuration

Informally, the configuration of a distributed computation is a combination of its

logical process interconnection structure and the mapping of the processes onto

nodes (Figure 1.1). The following more formal definition of configuration is based

on the assumption that processes use local interfaces for communications. The term

interface is used here in the restricted sense of that which serves to distinguish the

streams of communications a process either initiates or accepts. Examples of this are

found in remote procedure calls [RPC], and communication over CSP channels

[CSP]. The process presents to the run-time system an interface identifier which

serves at the application level to direct an outgoing communication or accept an

incoming communication. The routing of communications is determined by the

connections of the interfaces. The run-time system translates the interface

indentifier into a physical address to deliver or pick up the communication.

 4

The configuration of a distributed computation d executing on a distributed

system with set of nodes N is defined to be <Pd, sd, md>, where:

Pd is the set of processes which belong to d.

Each p  Pd has a set i(p) of communications interfaces of which it has sole

use.

sd is the relation which gives the structure of the distributed computation.

This is the logical interconnection between the processes, achieved by the

connections of their communications interfaces.

sd  I I, where I = 
dPp

i(p). (i1, i2)  sd iff the two processes using the

interfaces i1 and i2 are able to communicate using them.

md is the function which gives the mapping of d onto the underlying nodes.

md: Pd → N. The node location of a process p  Pd is md(p). The logical

interconnections of processes are also mapped onto the underlying network,

but this problem of routing will not be considered by the present work.

We require that the configuration of collections of client and server processes

belonging to different applications can be considered. This definition of

configuration is applied similarly to collections of communicating processes

Structure C

1

A1

B1

B
2

B
3

1 2 3 4Nodes

= interface

= process

Figure 1.1: Configuration = Structure + Mapping onto

Nodes

 5

belonging to more than one distributed computation. Pd is replaced by P, the set of

processes whose configuration is being considered.

1.1.2 Reconfigurability

Distributed computations which adapt to conditions of variable processor

availability have their configuration dynamically established and changed. They are

said to be reconfigurable: their configuration can change from run-time to run-time,

and it can change during their run-time. Reconfigurability was originally motivated

in this research by dynamic node allocation from a pool. But this is not the only

reason for considering it. Altogether, the factors which make reconfigurability of

research interest are:

R1] Resource-based configurations. Most generally, even "homogeneous"

distributed systems can contain nodes with connections to specialised devices

or other distinguishing characteristics. Also, nodes can be available in different

numbers at different times for administrative or other reasons (e.g. failure),

and not only due to systematic allocations from a pool. Thus configurations are

dependent upon resources in a wider sense than that of a fluctuating provision

of CPU power.

R2] Data-dependent configurations. Both the multiplicity of component processes

and their inter-connection relation sometimes depend on the data upon which

the distributed computation operates.

R3] Load balancing. In a distributed system with homogeneous nodes, multi-

tasking at the nodes can be extended to a facility for balancing the load

amongst them, by moving processes intact from more to less heavily loaded

nodes.

R4] Multiple-peer servers. Multiple-process computations can be constructed to

act as servers in performing resource-intensive processing for other

applications. An interesting class of reconfigurations for these is that of

adaptations to varying loads or other run-time conditions, made by altering the

communications connections between the clients and server processes

involved.

R5] System evolution. In software systems used in process control, it is sometimes

necessary to maintain the running state of the system even when part of it is

being changed. For example, when the implementation of a software or

 6

hardware component (device and/or process or group of processes) is

changed, reconfigurations are needed to replace it with a new one whilst

connected processes continue to execute.

R6] Fault tolerance. A failed or unreachable process belonging to a distributed

computation can in principle be replaced by a backup version of it.

The research presented here was concentrated on a framework for programmers

needing to solve problems associated with issues R1 - R4 and, to the extent that they

are related, R5 and R6.

1.2 RDCs

This dissertation describes a model of reconfigurable distributed computations

called RDCs, and their operating environment. The processes belonging to an RDC

are called incarnations. Incarnations are not simply a unit of execution of user code.

Other incarnations are able to perform generic reconfiguration operations upon

them which affect their communications connections, and this distinguishes them

sufficiently from processes in general to merit a different term. An incarnation has

its own mapped and protected address space, and multiple incarnations can execute

at a single node. Incarnations are single-threaded.

Incarnations possess communications interfaces, and the definition of

configuration given above applies to RDCs. Much of the research presented here

concerns the design and implementation of the interfaces and interconnection

components.

1.2.1 Reconfiguration Mechanisms

The model provides four types of mechanism exercised by existing incarnations to

establish the initial configuration of an RDC or part of an RDC, and to reconfigure it:

1] Mechanisms for setting up under program control from within an RDC a data-

dependent and/or resource-dependent configuration of a new group of

incarnations. This can be programmed a) without concern for the order of

creation of the incarnations and their inter-connection components, and b)

without requiring the programmer of the configured incarnations' code

modules to be concerned with how the configuration is established. (see R1

and R2 above).

 7

2] Mechanisms for altering existing connectivity between incarnations, so as to

change the set of incarnations which handle communications deriving from

given sources. (see R4, R5).

3] Mechanisms for propagating communications interfaces between incarnations

to create dynamically-determined connections between them, including

multicast connections. (see R1, R2, R4, R6).

4] Incarnation migration. (see R3).

In short, it is possible to create, migrate, destroy, connect, disconnect and

reconnect incarnations dynamically, and the agents performing these operations are

incarnations themselves.

1.2.2 Transparency

A principal design aim for the reconfigurability of RDCs is that reconfigurations can

take place whilst the affected incarnations continue, in some sense, to run. At worst,

an affected incarnation should be suspended, and then unblocked when the

reconfiguration is over. This leaves unanswered, however, the question of whether

an incarnation is semantically affected: the question of transparency of

reconfigurations.

The second principal design goal is for controlled (that is, not failure-induced)

reconfigurations to be transparent wherever possible and appropriate, in order a) to

avoid complexity by separating concerns between application algorithms and

reconfiguration management, and b) to avoid having to recompile code when new

kinds of reconfiguration are required.

Transparency is not always appropriate. For example, this is the case where a

server has to authorize a client newly connected to it before processing its requests.

The server requires knowledge of the connection. In cases where transparency is

appropriate, reconfiguration mechanisms are required to operate transparently. It

will be shown in Chapter 6, however, that this is not a sufficient condition for

transparency of reconfigurations with respect to application algorithms. We

distinguish between:

1] transparency for clients: the transparency of a reconfiguration which an RDC

or part of an RDC undergoes, with respect to a client incarnation – i.e. one

which makes requests of it. Such a reconfiguration involves reconnecting the

 8

client to a new server incarnation, or it involves the migration of the existing

server incarnation. This transparency can be achieved in the RDC model.

2] transparency for servers: the transparency of a reconnection of a client from

one server incarnation to another, with respect to the server incarnations.

If a server has state with respect to its client in the second case, reconfiguration

cannot be performed transparently if application-specific consistency is to be

maintained. Application-dependent configuration management strategies have to

be built upon the RDC reconfiguration mechanisms. The requirements for these

strategies will be analysed in Chapter 6.

1.3 The Implementation

An environment has been developed which supports multiple RDCs run by

multiple users. The RDCs have access to a shared collection of nodes which are

managed as a pool. The main products of the research are:

1] a set of primitives to establish an RDC's configuration; primitives for

communication between the incarnations; and a set of reconfiguration

primitives. All are implemented as system and library calls made from the C

language.

2] a purpose-built kernel which runs at each node. This was designed to be

compact, with minimal facilities to support the communication and

reconfiguration primitives. Effort was concentrated on support for

communications and incarnation management, with incarnation migration

regarded as a particular challenge. Apart from supporting the RDC

programmer's model, the kernel was also designed to facilitate the

implementation of node allocation management software as an RDC, i.e. in

user-level code.

The kernel is part of an operating environment constructed to support RDCs –

marketed recently under the commercial name Equus [EQUUS89a, EQUUS89b,

EQUUS90], but previously known as Wormos [WORMOS86, WORMOS87] – which

has been implemented on two distributed systems in distinct phases of its

development. The first is a set of 7 Motorola 68000-based processor cards connected

via a Cambridge Ring local area network and Multibus I bus, and the more recent a

set of 11 Motorola 68030-based processor cards sharing a VME bus with a (host) card

running the UNIX system V.2.2 operating system. Each system constitutes a pool of

 9

homogeneous nodes (although in the first system there are two different forms of

hardware interconnection) hosted by a UNIX development, execution and

input/output environment.

In addition to the kernel, Equus incorporates software to provide UNIX file

system and windowing facilities to RDCs via the host workstation. Furthermore,

the second implementation incorporates an RDC called the pool manager, which is

responsible for allocating nodes to client RDCs, and also for performing load

balancing by migrating the incarnations of client RDCs amongst a subset of the

nodes.

1.4 Dissertation Overview

Chapter 2 describes in further detail the background to this research, examining

resource sharing in existing systems with processor pools and idle workstations,

models for distributed programming and approaches to reconfiguration connected

with them. It ends with basic design decisions and the requirements to be addressed

by this dissertation, including some illustrative problems to be solved which are

based around an example RDC.

Chapters 3 to 8, the main chapters, elaborate the programming model and the

implementation.

Chapter 3 begins with a description of the execution environment constituted by

Equus. It goes on to describe incarnations: the ways they can be created and their

main features. It outlines the basis upon which an RDC is run and allocated nodes

from the pool. It describes an interface to node allocation software, which RDCs use

to map their incarnations.

Chapter 4 describes inter-incarnation communication semantics and the

structural components that make communications possible. The latter are motivated

by the requirement to support streams of messages and queues of messages, both of

which are the subjects of communications reconfigurations. The description relates

the communications design to the implementation considerations that constrained

the choices made.

Chapter 5 then develops the basics of the model presented in Chapters three and

four. It shows how the configuration of a set of incarnations can be declared, and

how the run-time system realises the configuration. It describes stream space, a

construct first developed as part of this run-time system which has an independent

 10

rationale as a means of propagating communications interfaces and other

components between incarnations.

Chapter 6 concentrates on reconfiguring incarnations considered as clients and

servers of one another. It describes the mechanisms for changing the incarnation

which is to receive and process streams and queues of message requests. It

describes general requirements of the application-level response to these

reconfigurations, and to reconfigurations in which an incarnation has to be

withdrawn and not replaced.

Chapter 7 describes the mechanisms provided for controlling incarnations and

monitoring events occurring in connection with them. They are described in the

context of the requirements for node allocation and load balancing, and of the need

to enforce RDC termination. Design choices made for incarnation migration, in

particular, are covered in this chapter.

Chapter 8 is concerned with the main implementation issues not already

covered. It describes the architecture of the Equus kernel. It gives an overview of

the communications mechanisms upon which all interactions are constructed, and in

particular it describes the re-routing algorithms used in the implementation of

incarnation migration and the reconfiguration mechanisms described in Chapter 6.

Finally, it gives performance figures for communication primitives and

reconfiguration mechanisms.

Chapter 9 concludes the dissertation.

Appendix A presents the experiments which were performed to measure the

implementation's performance.

Appendix B gives a brief description of each of the Equus calls.

 11

Chapter 2

Background

This chapter outlines the distributed computer systems and programming models

which form the background to this work. The starting points for the design are,

firstly, requirements for managing processor pools in the distributed system upon

which reconfigurable applications are to run, and, secondly, the model of processes

and their interactions whose reconfiguration is at issue. Having examined related

work for both these, the chapter goes on in Section 2.4 to give some examples of

reconfiguration problems, and to state the design requirements addressed by the

following chapters.

2.1 Processor Pools

The 1980s saw a shift away from centralised and time-shared mainframe computer

systems to the provision of personal computers and workstations for individual

users. The costs of hardware and the continuing need to serve groups of users with

similar facilities have led in turn to distributed computing environments in which

users' computers perform chiefly as intelligent user interface devices with fast

interactive response times. Large discs are shared between them under the

management of server machines, which are usually specialised for performance and

run no other applications for protection reasons.

For these distributed systems, the chief advantage of a processor pool is that it

provides large amounts of processing resources which can be shared and allocated

dynamically in such a way that a number of users at any one time can benefit from

processing power beyond that of a normal workstation, without the provision of

individual extra processor nodes in every user's workstation. The capacity of a pool

only needs to match the average instantaneous global demand within the

 12

distributed system, which is likely to be much less than that of all the users exerting

their peak demand simultaneously.

2.1.1 Purpose-built Pools

In the Amoeba system [AMOEBA90], the process server chooses a node from the

pool to run every new process it is requested to create. Each node runs the Amoeba

kernel, but there is some hardware inhomogeneity in their pool, and clients of this

service have to state whether floating point hardware is required and how much

memory is required. The pool's computers are mainly single VME boards with

68020 and 68030 CPUs (these chips are binary upwards compatible). Although

mention is made in the Amoeba literature of bulk allocation of pool nodes to run

their parallel make application (a program to construct a binary from given targets),

it is not clear how this facility is integrated with the process server's choice of node,

or what happens if, for example, twenty nodes are requested but only ten are

available.

The processor bank of the Cambridge Distributed System contains several

incompatible machine types which run between them several different operating

systems [CRAFT]. Software called the resource manager (RM), which itself runs on

nodes in the processor bank, constructs for its clients high-level resources such as the

Tripos or Mayflower operating systems, or a compiler, sometimes involving more

than one machine. It also offers to its clients system services which have been

constructed independently in the distributed system, and which are offered and

withdrawn dynamically through its auspices. For the purposes of making allocation

decisions, every resource managed by RM is in one of the states free, worm or

allocated. A free resource can be allocated unconditionally. Before becoming

allocated, a node preloaded with an operating system kernel can be used to run a

process called a worm segment. In this case it can be reclaimed by RM at any time,

but in the meantime by running the process it performs useful work for a low-

priority application of a type known as a worm program, developed elsewhere

originally, for utilising idle workstations (worm programs are discussed in Section

2.1.2).

Parallel Processing Machines

Whereas RM concentrates on managing a diversity of layered resources, the

homogeneity of the Amoeba pool lends it to being regarded for some purposes as a

parallel processor whose nodes can be allocated to distributed computations. This

view is reversed when a parallel processing machine is added to a distributed

 13

system, for then its nodes can be regarded as the nodes of a shared processor pool,

allocated in blocks for parallel processing by separate applications. In particular,

there are now several commercially available machines containing up to the order of

several hundred interconnected transputers [TRANSPUTER], and of the order of

tens of transputers can be hosted within standard personal computers and

workstations. Transputers are devices combining a powerful CPU with

communications link controllers on a single silicon chip: they are designed to be

linked to communicate with other transputers. They are aimed at applications

constructed from processes passing messages to one another. In particular,

transputers are aimed at applications constructed according to the CSP model [CSP],

from which the occam language for programming transputers derives [OCCAM].

The Helios operating system design includes a task force manager (TFM) to map

users' parallel applications onto a "network of communicating sequential processors

which do not share memory" [HELIOS] – typically interlinked transputers housed in

machines connected by a local area network. The TFM matches resource

requirements specified by users (in terms of node characteristics such as CPU type

and amount of memory) to available nodes. It partitions the nodes between users as

it does so: current generations of transputers do not support memory protection, so

that they have to be allocated exclusively to users to avoid interference from buggy

programs.

2.1.2 Idle Workstations

A number of facilities to use idle or under-utilised workstations as a fluctuating pool

of processing resources have been implemented: at Carnegie-Mellon University,

originally for the Spice system [DANNENBERG] and later for the Andrew

computing environment [NICHOLS]; at Xerox PARC, originally on a network of

Alto workstations [WORMS] and later for the Cedar computing environment

[HAGMANN]. Usage varies from a command available to run a single user's

command at an idle machine (Andrew), to a facility to run distributed computations

(the worms of Shoch and Hupp). A particular design problem is what to do when a

user logs back onto their workstation. The designers of the Sprite network

operating system [SPRITE] and the V-system [V85] cite the utilisation of idle

workstations as a motivating factor behind their process migration facilities: when a

user logs back on, processes utilising the workstation can be migrated back to their

source machine or to another idle machine. Worm segments, however, are simply

lost (whether at Cambridge or Xerox PARC).

 14

Worm Programs

A worm consists of a number of segments, each running on a single machine, and

each possessing the facility to communicate with the other segments of the worm.

As implemented at Xerox PARC, there is no central resource management scheme,

and therefore no arbitration between worms run independently, as to which can

create a segment at which machine (each machine supports at most one segment).

The worm mechanism provides facilities for worms to monitor the liveness of

segments and to locate idle nodes and start up new segments there. Applications

were built on top of this mechanism, and several examples were constructed, both to

perform directly useful work and to exercise the mechanism – the Existential worm

endeavours to maintain a constant population count of segments, somewhere in the

network. A worm begins by locating idle machines and establishing an initial

population of segments. If a segment becomes lost or unreachable through crashing,

network partitions or when a user reclaims a workstation by logging on, the worm

can reconfigure by locating new idle machines and creating replacement segments

there. A worm is thus required to adapt not only to the number and locations of

workstations which happen to be idle when it runs, but also to changes in this

working set of machines whilst it runs. The main features of worm programs, then,

are their ability to exploit whatever processing resources are available to them, their

ability to recover from some failures, and their degree of autonomy: worm programs

configure and re-configure themselves.

2.2 Distributed Programming Models

Many distributed programming paradigms have been developed over the last two

decades, and although some have proved more widely used than others, no one

model has proved generally superior, and nor is there a consensus on which

paradigm best suits which problem. There is a broad split between the language-

based approach (e.g. [ACTORS, ARGUS, BRINCH, CSP, ORCA, POOL]), and the

distributed operating system approach (e.g. [AMOEBA90, CHARLOTTE87,

CHORUS, DEMOS87, EMBOS, MACH, ROSCOE, V88]). The former approach is

concerned primarily with programming single, autonomous applications; the latter

is addressed additionally to the interactions between separately written and

compiled programs, particularly those interacting according to the client-server

model.

Whatever the model, there are two views of a distributed application. The

algorithmic view is a static view. It is described by giving the function of each

 15

programmed component, including local knowledge of the functions of any

components it interacts with. The other view, addressed by this dissertation, is

concerned with the application's configuration, as defined in Chapter 1 in terms of

its dynamic structure and mapping.

In some paradigms, structure is closely related to application algorithms. Object-

oriented programming [JONES] is an important model in this category. Objects

encapsulate procedures applied to local data, whose application is requested by

other objects, viewed abstractly as operations or invocations made upon the object.

Objects can, like processes, have one or more independent threads of control. The

structure of a program written in the object-oriented style can be highly complex

and dynamic. Suggestions for reconfiguring these programs have been made,

however, and include schemes for migrating objects between nodes to improve

performance [EMERALD], and the interposition of entities called proxies

[SHAPIRO] which trap invocations and dynamically determine the objects which

handle them, to improve performance or provide fault tolerance. ISSOS ([ISSOS],

discussed in Section 2.3.1) does reconfigure collections of objects, but ones whose

structure is defined to be largely static, undergoing small changes known as

adaptations.

The parallel programming language Actor [ACTORS] is also used to create

dynamic and potentially highly complex structures, this time of lightweight

processes called actors which pass messages to one another. They pass messages

asynchronously, to maximise concurrency. The actor model is notable for the high

degree of inter-relation between structure and algorithm [HEWITT]. Networks of

actors are dynamically constructed as part of the algorithm, to perform, for example,

a recursive factorial computation with an individual actor evaluating each product.

We turn now to paradigms in which greater separation is possible between

configuration management and application algorithms than in the object and actor

models.

2.2.1 Loosely Coupled Processes

Since RDCs are to be able to act as servers, incarnations belonging to separate RDCs

have to be able to interact, even though they were developed separately. This is a

similar requirement to that met by the use of pipes in UNIX [UNIX] to couple the

output of one program to the input of another. The versatility of this scheme

derives from the fact that each program is transparent to the other one. Processes

whose code is independently written and compiled, but which are nonetheless able

 16

to interact through software interfaces, have been called loosely coupled [LYNX].

This is in marked contrast to the concurrent programming language CSP, in which

all processes that are to interact with one another have to be written, compiled and

linked together.

The other properties which characterise loosely coupled processes are:

1] Loosely coupled processes do not share physical memory. This is not just

because they are independently compiled. It is also because in general they run

at physically disjoint nodes in a distributed system. Even if processes can

reside at the same node, use of shared variables through physically shared data

segments precludes a reconfiguration in which they reside at different nodes.

2] Loosely coupled processes are heavyweight. Running at a multi-user, multi-

tasking node, they execute in separate mapped and protected address spaces

which are expensive to create, and therefore they must perform a significant

amount of work for their existence as separate processes to be justified. A

number of distributed operating systems such as Mach provide kernel support

for lightweight threads running together in a single processes address space

[MACH], which are therefore less expensive to create; and they additionally

facilitate the multiplexing of a process's work so that a task can be performed

by a thread when another thread blocks. However, in all systems supporting

threads it is the host process which is considered the main unit of

configuration, and threads are encapsulated from other processes interacting

with a multi-threaded process.

2.2.2 Approaches to Interaction

There are two commonly used models of interaction between loosely coupled

processes: message passing and remote procedure call (RPC).

Message passing is the means of interaction in a number of languages besides

Actor – for example, the Conic language [CONIC89a] – and it is a fundamental

facility of distributed operating system kernels [AMOEBA90, CHORUS, MACH,

V88]. A message is a collection of data which is copied between processes via,

typically, send, receive and call (send and implicitly receive) operations. The

destination of messages is a process in the V-system, but is more commonly an

intermediate entity such as a Mach port, or a local entity such as a Conic exitport,

both of which allow for the receiving process to be dynamically changed.

 17

Remote procedure call [RPC] is an attempt to extend conventional procedure call

semantics to the distributed case, in which the process which executes the code of

the called procedure (the server) is in general in a machine which is remote from the

calling process (the client). The call's input parameters are despatched to the server

and any results are returned to the client. The binding of the procedure name to the

address of the network location used by the process which executes the remote

procedure code can be carried out at run-time. It is not normally possible in RPC

implementations, however, for the binding to be changed transparently at run-time,

as we require if reconfigurable server RDCs are to be constructed. The designers of

the Mercury system at MIT have extended RPC semantics [WEIHL] in two respects.

Firstly, the target of a remote call is not a procedure but a port possessed by some

active entity which accepts the call. The designers plan to allow the ownership of

ports to change. Secondly, they have addressed a disadvantage of RPC, which is

that it is synchronous. Like conventional procedure call, a remote procedure call

returns only when the procedure has been executed. The Mercury design provides

for calls to be made asynchronously over what they refer to as call streams, thus

enabling interacting processes to work in parallel.

We turn now to work which has investigated the problems of reconfiguring

distributed computations.

2.3 Systems with Reconfiguration

Systems addressed directly to the provision of facilities for reconfiguration differ in

the types of configuration and reconfiguration supported, and in the degree of

separation between application algorithm and configuration management.

2.3.1 Language-based Systems

Conic and CSR

Conic [CONIC89a] is a distributed programming environment developed at

Imperial College, University of London, which addresses itself to language support

for reconfigurable distributed programs. They have developed two languages used

together: one for application algorithms and one for configuration. CSR [CSR87,

CSR89] is a software paradigm developed at Bristol university as part of a project

which aims at reconfigurability of components written in the language CSP.

Their work exhibits several commonalities: i) the attempt to separate issues of

configuration and reconfiguration from application algorithms; ii) the use of system-

 18

provided configuration managers; iii) the use of components (CSR's controllers,

servers and resources, and Conic's logical nodes) which employ message passing for

interactions; iv) the ability to connect and disconnect externally the set of interfaces

each component uses for sending and receiving messages, thereby constructing and

altering the set of components each interacts with; v) target applications for each

include process control and instrumentation. Reconfigurations are required to take

place whilst an application executes, and so as to preserve its consistency, safety

conditions such as the avoidance of certain operating conditions, and liveness

conditions – the absence of deadlock or livelock. A typical reconfiguration

considered is the integration of a new software component when hardware is added

or switched on, or the removal of hardware, and consequently any components it

hosts. These problems are analogous to those of exploiting a node dynamically

allocated from a pool, or coping with its withdrawal.

In both systems, the application writer creates separate code modules from

which executing instances are created. The application component interfaces used

are CSR's channel stubs and Conic's exitports and entryports, all of which are typed

according to the data type of messages which can be sent or received using them.

The interfaces are in each case local names which hide the actual destination or

source of messages sent through them. Language declarations determine the set of

interfaces of each component statically, up to parameterised lengths of arrays of

interfaces. It is possible for an interface to become disconnected from any other

interface.

To configure or reconfigure an application, the systems interpret commands

which are typed by a (human) system administrator or, additionally in the case of

Conic, supplied in a script written in the configuration language or contained in a

request from an application component. It is not clear to what extent the latter has

been tried. The systems also provide a set of queries for users to examine the state

of running applications.

Configuration is established and altered ultimately by an application-

independent configuration manager, which constrains the connections that are made

in order that only interfaces of the same type can become connected. Apart from

typing constraints, the configuration manager allows component interfaces to be

connected arbitrarily in each system. Whilst Conic does not promote any structural

models over others, CSR applications are by definition configured in a hierarchy

according to strict rules. This simplifies the task of a second system component, the

configuration controller, in implementing a general strategy to maintain required

 19

consistency, safety and liveness properties for any CSR application. A

reconfiguration command issued by a user of the CSR system, such as one to remove

a certain process, is handled by the configuration controller. It examines a

configuration database to work out which components will experience a

disconnection when the component is removed. It synchronises with and

communicates with the application, so that the disconnections and removals it

requests the configuration manager to carry out do not compromise the application's

consistency or safety or lead to deadlock. Application code runs inside a harness

which is designed to hide from it the details of interaction with the configuration

controller.

Despite the original aim of separating application algorithms from the details of

configuration, the designers of both systems were led to study the particular ways in

which, it turns out, the two are necessarily inter-related in significant cases. The

CSR application harness and configuration controller achieved separation of

concerns for the CSR paradigm, but its designer described the paradigm as "over

simplistic, imposing a high processing overhead and leading to unnecessarily

complex implementations." ([CSR89], p. 62). The Conic team have looked at a

generic model of interaction between the application and configuration

management, which enables the latter to preserve what they refer to as the

consistency of the application [CONIC89b, CONIC89c]. This relies upon the

application writer incorporating code relevant to reconfiguration in each

component's code module. Firstly, to determine and assert its state of activity or

passivity. These are its possible states from the configuration management

viewpoint. They are each a function of the interactions between it and the

components it is connected to. Secondly, to implement what are called initialisation

and finalisation actions, which take place when a connection is made or unmade.

Whilst the Conic scheme abstracts configuration states away from the particular

application for management purposes, the application writer is still very much

involved in enabling reconfigurations to take place, because he or she is concerned

with these states and their transitions from within the application.

ISSOS

ISSOS [ISSOS] is a programming system developed at Ohio State university which is

aimed at prototyping and tuning parallel programs. These programs are adapted by

changing their structure, their implementation in terms of program versions and

parameter values, and their resource allocation: the placement of processes onto

processors and use of shared memories. The applications consist of a collection of

 20

objects written in C which perform invocations upon one another. Their

configuration is described with COOL, an object-oriented extension to C. The paper

[ISSOS] describes facilities to monitor an executing parallel application by

examining the values of variables. Adaptations can be specified by the programmer

as being required when guard conditions expressed in terms of application variables

evaluate to TRUE. An example is given of the addition of a worker process when

the length of a job queue from which a number of workers extract and execute tasks

exceeds a given value. ISSOS also allows adaptations in the form of changes to

application parameters whilst it is running, in order to affect its behaviour without

changing the application's structure. The example given is an alteration to a sleep

time in the objects which add items to the queue. This has the effect of changing the

rate at which jobs are added to it.

ISSOS's stated aim is the separation of adaptations from application algorithms,

and for this reason the monitoring and adaptation mechanisms described are

transparent to the application. However, it is not clear whether the synchronisation

which sometimes proves necessary between application and configuration

management, as shown by the Conic and CSR work, is addressed or provided for.

HPC

HPC (Hierarchical Process Composition) is a complex model of interprocess

relationships developed at the University of Rochester, USA [HPC]. It provides a set

of primitives used to connect and disconnect components dynamically, and is

described as allowing "user-defined adaptations to failure or environmental

changes." An HPC operation domain is a special case of an object of a type known

as a shell. A shell exports communications interfaces to the outside world, and

encapsulates the configuration of the objects inside it. In an operation domain, one

of these objects is a process known as a controller, which is responsible for

modifying and maintaining objects within it. This includes alterations to the

population of objects and to their interconnection, both with one another and with

the interfaces which the shell exports. Such alterations are the adaptations to failure

or to environmental changes – such as load conditions – referred to above. HPC

incorporates two features not found in the systems described so far:

1] there is no single, system-supplied configuration manager. Every application

has a controller (or, rather, nested set of controllers) which acts as its own

application-specific configuration manager. Moreover, the controller is able to

establish a control channel with each of the objects in its domain, for

reconfigurations which require the consent of the affected objects.

 21

2] HPC provides for the interconnection of applications through exported

interfaces. A design aim is for any reconfiguration performed by one

application to be transparent to the other.

LADY

The LADY programming language and environment was developed at the

University of Kaiserslautern, FRG, for the implementation of distributed software

systems, with a special focus on operating systems. Because of this focus, it contains

features for dynamically establishing and changing program configurations from

within applications, as opposed to the external configuration management approach

of the models above.

Like many other distributed programming languages, and like all distributed

operating systems, LADY allows its main execution components, multi-threaded

heavyweight processes called teams, to create further teams. LADY thereby allows

for data- and resource-dependent structures. Teams are inter-connected via long-

lived components called logical channels and logical buses, which also can be

dynamically created so as to interconnect dynamically-created teams. Team

interfaces called output ports and input ports come to be connected via these

components. A logical channel is a one-to-one connection like a Conic or CSP link,

but logical buses are for one-to-many or multicast communication.

Multicast Communication and Process Groups

A multicast facility has been incorporated into several languages, programming

systems and distributed operating systems. Its uses include sending notifications,

queries and updates to a group of processes performing parallel processing or

managing distributed data [V88, KAASHOEK], and tolerance of failures through

replication of processes [ISIS]. An important feature of multicast is that multicast

addressing modes allow for the transparent addition and subtraction of processes to

and from the multicast group that receive messages. How and whether to achieve

reliability, atomicity and transparency for multicast semantics, and what tradeoffs

are required to achieve efficiency, are all subjects of continuing research

[KAASHOEK].

Distributed Shared Data

Linda [LINDA] is an extension to C (and other languages) comprising primitives to

access data within a construct called tuple space. Linda processes only interact with

Tuple Space, and never directly with one another. They communicate by depositing

 22

data items called tuples into tuple space, and taking them out or reading them. A

tuple is an ordered set of data items. To request a tuple, the values of zero or more

fields are given by the requestor. The other fields are each given a variable of

appropriate type in the request. The request is returned a tuple which matches it in

the given field values and types. The request is blocked if necessary until such time

as a matching tuple has been deposited. Typically, a master process deposits a

collection of tuples describing tasks, which are executed by a collection of worker

processes which obtain them from tuple space. The coherence of shared tuple space

is guaranteed by the run-time system, even though it is divided across machine

boundaries.

Linda is one of several approaches to distributed programming using shared

data surveyed by the designers of the language Orca [ORCA]. In Orca, processes

communicate and synchronise via passive objects which encapsulate the shared

data. A shared task queue is an example of such an object: a master process adds

items to this queue, and worker processes retrieve tasks from it. The run-time

system ensures that these operations are performed indivisibly.

These models emerged after the work presented in this dissertation was begun.

Their attraction in relation to reconfigurability is the lack of direct process

interaction. They avoid altogether the problem of connection and disconnection of

processes. Only a master process overseeing an application need be aware of the

addition or withdrawal of a worker process to or from a running computation.

However, they do not satisfy the requirement of loose coupling of processes. They

are aimed primarily at single applications with private shared data spaces, and it

would be awkward to extend this to a system of multiple shared object/tuple spaces

which overlap sufficiently for the connection of loosely coupled clients and servers.

There is also a lack of agreement about their scalability to large collections of nodes,

but the need to maintain coherence of the shared data across all nodes must impose

some limits on the number of nodes that programs written according to these

models can exploit.

2.3.2 Distributed Operating Systems

Distributed operating systems are designed to manage the activities of loosely

coupled processes which interact largely as clients and servers, often employing

RPCs. A kernel is typically constructed to provide a few process management and

message passing primitives, whose design and implementation aims for location

transparency and efficiency. Most designers try to keep the kernel small and robust,

with higher-level services such as the file service implemented in user-level code.

 23

Then they can be improved, relocated and extended without interference with the

kernel or with other services.

The structural components supported by different distributed operating systems

to connect loosely coupled processes are now examined.

Link-based Systems

Links are used in [CHARLOTTE87, DEMOS, EMBOS, ROSCOE] as the sole means of

interprocess connection. They are intended for long-lived connections and are

designed to provide protection, so that the set of processes able to send messages to

a given process can be controlled. Unlike the linkage constructs of the models

described above, links exist separately from processes, and link ends can be

propagated from process to process by being enclosed in a message, thus

establishing dynamic communications connections. In particular, a client can be

connected to a server by having a link end connected to it sent to the client in a

message, typically by a name service with which the server has registered itself.

Link models vary in whether links are unidirectional or bi-directional. In the former

case, the sending end can be duplicated so that multiple senders can be connected to

the same link end held by a server process. Charlotte's bi-directional links can each

connect only a single pair of processes. In some models (Charlotte, for example) a

link end which is used for receiving messages can be sent in a message, thereby

altering the server process which handles clients' messages. Link ends are

represented by local names within a process, and this reconfiguration is transparent

to the sender.

Link-based models are designed for programs to handle the connection of

loosely coupled processes – i.e. for a case in which, unlike Conic/CSR/ISSOS/HPC

processes, processes do not have a statically defined and comprehensively known

set of communications interfaces. Moreover, for protection and to manage the

multiplexing of different clients' requests, servers can require knowledge of the

clients connected to them. So the requirements for configuration transparency differ

in this respect from those of, say, the Conic model.

Port-based Systems

Ports are found in a number of important distributed operating system designs

[ACCENT, AMOEBA90, CHORUS, MACH]. Each process possesses a number of

ports, which are local message queues from which it has the sole right to receive

messages. Other processes are able to send messages to these ports by virtue of

 24

possessing send rights. Send rights can be propagated in messages between

processes, and in some cases receive rights can, too. The propagation of send rights

and receive rights have the same effect on process connectivity as the propagation of

link ends, and the Accent and Mach port models are no less connection- and

protection-oriented than link-based models.

In some designs, ports differ significantly from link-based models, however.

Firstly, the possession and propagation of send rights is not always constrained by

the kernel, as it is with links. Access to server-managed resources is instead

controlled at user-level through use of capabilities. Amoeba capabilities, for

example, are data items fabricated by servers. The capabilities contain server port

identifiers and refer to the objects which the servers manage. Capabilities determine

the rights of the client possessing them to perform operations upon the

corresponding objects. They are designed to be difficult to forge. A second

difference from links is that Amoeba and Chorus ports can both be collected into

port groups for the purposes of multicast communications, as in the LADY

programming system described in Section 2.3.1.

Migration

Process migration mechanisms have been designed for DEMOS/MP, Accent,

Charlotte, Sprite, LOCUS, the V-kernel and MOS [DEMOS83, ZAYAS,

CHARLOTTE89, SPRITE, LOCUS, V85, MOSa]. Migration is motivated by:

1] load-balancing: It has been suggested for use in attempting to balance the

computational load on a group of nodes so as to improve throughput for a set

of jobs, over that possible with a static assignment [NI, MOSb].

2] dynamic node withdrawal: when this occurs in a pool-based distributed

computer system, a possible means of recovery is to migrate the affected

processes to another node, as already described for the V-system and Sprite

network operating system.

3] co-location of communicating processes: If two processes communicate

synchronously and frequently, it may be most efficient for them to be hosted by

the same node rather than to incur the costs of remote communication. Process

migration can be used to perform co-location as processes enter into and leave

such patterns of communication with one another.

4] an alternative to swapping: If insufficient memory resources are available for a

process to run any further, it may be possible to migrate it to another node

 25

which does have sufficient memory resources, rather than swap the process out

to disc.

5] fault tolerance: Process migration has been suggested for building fault

tolerant systems [RENNELS]. Under certain failure conditions, sufficient

process state is available to re-establish the process at a working node.

The problems in the implementation of a migration mechanism stem:

i] from the need for transparency, both with respect to the migrated process itself

and to those it interacts with.

ii] from the need for reasonable performance, so that efficacious load-balancing

and co-location strategies can be supported; and so that minimum disruption is

caused when processes are migrated away from nodes when they are about to

be withdrawn.

iii] from the problem of residual dependencies. This is where a process has to

leave kernel state or an object such as a file upon which it depends at a node it

has migrated from. This means that previously local operations now require

communications, and it means that failure of the previous host will affect the

migrated process.

2.4 The RDC Model

This section now presents the basic design decisions made and design issues

addressed by the research presented in this dissertation. It relates these to the

survey of background work just presented.

2.4.1 Design Decisions

Node Allocation

The present node allocation requirement is to provide a framework within which a

variety of policies can be implemented and tested. Existing practice as represented

by the distributed systems just examined led to the following general characteristics

of node allocation to base the rest of the design upon.

1] It was decided to provide time-sharing at each node, and to allocate node

resources to RDCs according to a system-defined policy exercised by a

resource manager. These decisions were taken in the light of the deficiencies of

 26

the Xerox PARC worm system. These were that there was no arbitration

between worms, and no way for a worm to run if another worm had already

gathered all available nodes (Section 2.1.4). Each of the distributed computer

systems used for the implementation described in this dissertation consists of a

pool of processors accessible via connected workstations, and the resource

manager is therefore called the pool manager.

2] Resources are to be managed at the level of nodes, and there are two types of

node allocation. In the first, the pool manager chooses a node for every

incarnation it is asked to create (like Amoeba's process server). In the second,

nodes are allocated in blocks on-the-fly, and the application decides how to

exploit them, as is the case with worm programs in the Cambridge System

(Section 2.1.1). The construction of resources at a higher level than nodes, as

performed by Cambridge's resource manager, is beyond the scope of this work.

3] Mechanisms are to be designed for use in enforcing priority schemes by

withdrawing and re-allocating nodes. Whether a pool is purpose-built or

consists of idle workstations, existing practice is to allow some users or

applications to take priority over others. In the idle workstation case, priority

at a node means the eviction or destruction of other users' processes; in the

Cambridge processor bank, priority over a worm segment leads to its

destruction.

4] Incarnation migration is to be implemented. This is to make recovery

possible from node withdrawal and to provide a framework for load balancing

(Section 2.3.2).

The RDC Model

The RDC model is aimed primarily at long-running, computationally intensive

applications such as image processing. RDCs can be programmed to operate as

autonomous applications, or as servers providing facilities to loosely coupled

clients.

5] The computational model is connection-oriented. This is to enable

configuration management to take place, and to suit the long-lived series of

interactions which incarnations are expected to engage in.

6] Communications are to be in the form of message passing primitives. These

are to include asynchronous primitives for parallelism and multicast for

addressing groups of incarnations (Section 2.3.1). Although the development

 27

of language-level RPC or object invocation semantics is beyond the scope of

this work, run-time support for both can be implemented on top of an

appropriate choice of message primitives. Synchronous message primitives

supporting request-reply interactions efficiently are also necessary in view of

this.

7] Any incarnation can create other incarnations, and any incarnation can

manage other incarnations – within an RDC, or as a service to other RDCs.

There is no system-defined functional hierarchy of incarnation types, like the

nested controllers and basic processes of HPC (Section 2.3.1). The HPC

approach to process management was considered too protection-oriented for

the present concerns. But it was decided to provide protection against

unwanted management operations and communications for the multi-user

development systems.

8] Declarative configuration establishment primitives are required. These are to

be called from existing incarnations which dynamically decide upon the

configuration. One of the features of Conic's configuration language (Section

2.3.1) which is to be used is its declarativity. The programmer of both

configuration code and application algorithm code is to be isolated wherever

possible and appropriate from the operational details of creating incarnations

and their connection components.

9] Mechanisms are required which enable sets of incarnations to acquire

connections with one another explicitly. Applications written according to

the object and actor paradigms exist in which active entities are dynamically

created and connected according to – and not transparently to – the algorithms

(Section 2.2). This suggests that having only reconfiguration mechanisms

which are externally imposed upon application incarnations would be a

limitation, and that application-initiated decisions to create a new incarnation

and connect it dynamically to the existing computation should be possible in

the RDC model.

The Operating Environment

10] All the above mechanisms are to be realised by a purpose-built kernel. This

is so that they can be performed efficiently.

11] User-level code implementations of node allocation and dynamic scheduling

for load balancing are to be possible. These facilities require testing and

 28

adjustment. By implementing them at user level, they are made more

amenable to change than if a kernel implementation was produced.

12] The kernel is to provide mechanisms to enforce RDC termination.

2.4.2 Aspects of Reconfiguration

To illustrate the aspects of reconfiguration addressed specifically by the research

presented in this dissertation, several problems are now introduced. These are

related to the design of a text processing RDC and a printer server RDC that derives

from it. The examples exhibit features which are addressed and solved directly by

the mechanisms of the RDC model. The examples also show that there are

application requirements which must be met before reconfigurations can be safely

applied.

Figure 2.1 shows a set of incarnations which between them process in parallel

and print a set of documents.

The scheduler incarnation is given the list of documents to process at the start,

and each of a set of worker incarnations repeatedly acquires a document from it (by

workers

printer
spooler

manager

printer
Processed
Documents

(monitoring)

Task
Acquisition

scheduler

Figure 2.1: Initial Configuration of Text Processing RDC

 29

name) and processes it. The scheduler-worker structure is a widely used paradigm

in parallel processing of multiple independent tasks (see, for example,

[HAMILTON]). All the worker incarnations, and therefore their nodes, are kept

busy as long as there are tasks left to perform, since they acquire the next task as

soon as the last is complete. It is a structure of particular interest here, since it is in

principle possible to add a worker transparently to the scheduler.

The worker incarnations send the processed data asynchronously for printing.

This data is received by a printer spooler incarnation which buffers and collates it as

necessary before directing it to a local printer. It is monitored by a manager

incarnation. For the present purposes, monitoring is assumed to consist of printing

at a display messages concerning performance parameters such as the number of

documents that have been printed so far, and the length of the queue of requests

from the workers.

The manager incarnation is assumed to exist at the start, and it establishes the

rest of the RDC. It has determined in this example that four processing nodes are to

be used, and a worker incarnation has been created at each. Given the nature of the

application, it is to be expected that little would be gained by having any of these

nodes host more than one worker incarnation. The printer spooler requires local

access to a physical printer. The scheduler performs a trivial computation when it

allocates work; but it is a potential bottleneck, and whether or not it should share a

node with a worker depends on the number of workers and the mean document

processing time. The manager incarnation's mapping depends on the

communications patterns caused by the monitoring activity, since otherwise it

imposes little processor load. In short, the optimal mapping of the RDC is a function

of the application's behaviour and the nodes' processor and communications

performance heuristics.

The structure of this RDC is both data-dependent and resource-dependent: the

optimum number of worker incarnations is at most the number of nodes available

which can host them, but no more than the number of documents, since a document

represents the quantum of work allocation. It is assumed that initially there is only

one printer spooler. There are other printers attached to other nodes, but these are

left by default to other users.

The aspects of reconfiguration to be considered are as follows:

 30

1. Configuration Establishment.

Through what mechanisms is the configuration established by the manager,

given that the configuration is a function of run-time conditions (the number of

nodes available and the number of documents)?

If there are still sufficient documents to process at a time when an extra node is

available for allocation, it could be decided to create a new worker incarnation there:

2. Dynamic Addition of a Worker.

Through what mechanisms can a new worker be dynamically created and

connected to the scheduler and printer spooler? To which incarnations can this

reconfiguration be made transparently?

clients

printer
spoolers

printer
manager

Processed
Documents

printer

printer

Printer Server

(monitoring)

Figure 2.2: A Printer Server RDC with Clients.

 31

In some circumstances, the rate of throughput of processed documents is important

enough, and the current rate of throughput being monitored is low enough, to add a

second printer node, and hence printer spooler incarnation, to the running RDC

when one becomes available.

3. Dynamic Addition of a Spooler.

Through what mechanisms can a new printer spooler be created and connected

to the existing incarnations so that the workload is shared between the two

printers? To which incarnations can the reconfiguration be made transparent?

Figure 2.2 shows a different view of the printer incarnation population, as being that

of a separate printer server RDC which services a number of independent client

incarnations that are dynamically connected to it. The server RDC uses one or two

printers according to the level of demand being placed upon it, and according to

whether the second printer is available or has been allocated for some other purpose

which takes priority.

4. Dynamic Addition of a Spooler to the Printer Server RDC.

How can the printer server be designed so that it can share work between the

printers, but now given the variable number and unknown identities of the

clients?

Finally, there is the question of reversing these reconfigurations:

5. Dynamic Withdrawal of a Worker or Spooler.

After the reconfigurations of 1 - 4 have been made, how can recovery be made if

the extra node is withdrawn and i) a worker and ii) a printer spooler are

affected?

2.4.3 Discussion

Statically declared and externally connected interfaces, as used in the Conic and

HPC models, are desirable for transparent configuration establishment and

reconfiguration. Where interfaces are known, the example problems can be solved,

at least at a mechanistic level, by disconnecting and reconnecting interfaces

externally. But this is not suited to managing connections between independent

clients and servers.

 32

The ports and links of distributed operating systems, on the other hand, provide

mechanisms for connections and reconnections between loosely coupled clients and

the printer server. But these models are limited in their support for transparency.

Connections would have to be explicitly acquired by the incarnations of the text

processing RDC as their configuration was being established. And reconnections

appropriate to spooler addition or withdrawal would have to be made explicitly by

the spoolers, by transmitting port rights or link ends.

A synthesis of these communications connection models is therefore required.

The design by which the RDC model achieves this will be developed in Chapters 4

to 6.

At an application level, both the scheduler and the printer spooler incarnations

may retain state between communications with workers or clients which could lead

to inconsistencies if they were disconnected arbitrarily. It will be shown in Chapter

6 how, in the unbuffered Conic connection model, clients of the printer server would

have to be brought into a specific state in an application-dependent way before

reconnection to a different printer spooler could take place safely. This is wholly

unsatisfactory, and it will be shown in Chapter 6 how the RDC model dispenses

with this requirement by incorporating message queues as objects of

reconfiguration.

2.5 Summary

This chapter has considered related approaches to programming and reconfiguring

distributed computations, and described pool-based management schemes. The

research work has been set in the context of backgound work in the previous

section, and examples have been given which manifest some specific issues of

reconfiguration which are to be addressed. The next chapters go on to elaborate the

design of the RDC model and operating environment.

 33

Chapter 3

RDCs

This chapter begins the description of the RDC model and its execution environment

with preliminaries for the next chapters' treatment of configuration. It covers the

construction of RDC binaries from code modules. It describes and gives rationales

for the basic model of incarnations, and the mechanisms available to create new

incarnations. It describes the sequence of events which occur in order to initiate the

running of an RDC, and gives a brief discussion of node allocation policies used

with the development processor pools.

3.1 Modules and Incarnations

An RDC program is constructed from one or more separately compiled components

called modules. Modules are used by the programmer to effect the functional

division of an application. An example of this from the document processing

program of the last chapter is that the scheduler and worker components would be

programmed as two separate modules.

The term "incarnation" was chosen because each incarnation is created from a

module, but there are in general several incarnations of each module executing as

part of an RDC, with separate identities. Being executing images of the same code,

incarnations created from a given module perform functionally similar roles within

an RDC, but typically execute upon different data in parallel.

Each module is used for the creation of only one type of incarnation, which

commences execution at the root of the module's main program. Incarnations are

able to support recursion and standard libraries through stack extension and

dynamic memory allocation. No language constructs have been added to the C

language for programming RDC modules: access to the facilities available under this

 34

model is exclusively through C function calls. Each incarnation runs in a separate,

protected, virtually-mapped address space comprising a text segment and growable

heap and stack segments. The kernel does not provide virtual memory or swapping

to disc, however, and the programmer has to be aware of memory limitations. Since

incarnations are heavyweight processes both in terms of set-up costs and execution

management costs (context-switching between mapped address spaces), their

creation is only justified if they are long-lived.

It is not essential to the RDC model that incarnations are single-threaded. There

was insufficient time to develop either kernel facilities for multi-threaded

incarnations, or a user-level threads package. There are sufficient facilities to

monitor and manage asynchronous communication completion for the construction

of a user-level package to be possible. These will be described in Chapter 4.

To minimise the set of changes necessary to existing C code, the main program

declaration of any RDC module is of the form shown in Figure 3.1. All incarnations

belonging to an RDC are able to access arguments and shell environment bindings

supplied to the RDC at the time that it is run, through the normal arguments argc,

argv, and envp. The additional argument myparams is for the sole use of the RDC

programming scheme: it points to a data structure which comprises a block of

incarnation-specific data arguments and to a list of names of communications

interfaces through which it is connected to other incarnations. The declaration of

and use of incarnation parameters are described in Chapter 5.

Executable Files and Module Names

A module is compiled into a file containing executable code, initialised data and

kernel-dependent execution information. A module can be incorporated into any

number of RDC binaries without modification. RDC binaries are single files

main(argc, argv, envp, myparams)

 int argc;

 char *argv[];

 char *envp[];

 IncParams *myparams;

{

 ...

}

Figure 3.1: Main Program Declaration for an RDC Module.

 35

comprising a concatenation of module files prepended by header information. In

the code the modules are referred to by their index in this concatenation, the

ordering of which is given at the time of the program's creation. The index can be

derived from a character string module name which the RDC binary's creator can

also supply if necessary.

3.2 Incarnations

3.2.1 Creating an Incarnation

To create an incarnation, a node must be selected, the incarnation to be created must

be defined, and its initial parameters must be defined. Node selection will be

covered in Section 3.4.

There are three ways to create a new incarnation: 1) by creating it from one of the

RDC's modules (held on disc), 2) by creating it from an image of a module held in

volatile memory, and 3) by forking.

1] inc_create with a module identifier as argument. Creating an incarnation from a

module allows the caller to continue intact, but creates an incarnation which

will begin execution from the start of the module's main program. Its initial

state is specified to be either STARTED or INCHOATE. A STARTED

incarnation proceeds to execute its main program when it has been created, an

INCHOATE incarnation's execution is suspended at the point where all

components have been assembled in main memory except its incarnation

parameters (the IncParams structure which is passed to the main program).

2] inc_create with an INCHOATE incarnation's identifier as argument.

INCHOATE incarnations can be substituted for modules in a next step of

creating another incarnation of the same module. This makes creation faster

since INCHOATE incarnations reside in volatile memory, not on disc.

Although it may seem a low-level concern, this removes an unsatisfactory

performance obstacle which was experienced when configuring an RDC. The

host workstation became a bottleneck for fetching module text and initialised

data. An INCHOATE incarnation is not wasted: a call exists to change its state

to a STARTED incarnation in its own right. inc_create unblocks the caller as

soon as the new incarnation's creation has been initiated, and before executable

code and initialised data have been fetched. Therefore large numbers of

incarnations can be created in parallel, by employing multiple INCHOATE

 36

incarnations created initially, from which others can be created independently.

The use of INCHOATE incarnations is intended as being hidden from the

applications programmer behind library calls.

3] inc_fork. Forking is similar to the UNIX facility of that name: the caller

continues to execute, having created an incarnation with a copy of its execution

state, but with a return value indicating which is the new incarnation and

which the original caller. Forking allows new incarnations to be created whose

state depends on processing so far. For example, a single server incarnation

RDC with connected clients can be forked to another node to produce a copy

with all the relevant data necessary to process requests from any client. The

question of by what mechanisms clients can be divided between the original

incarnation and the new one remains to be addressed in Chapter 6. Given the

absence of kernel support for copy-on-write virtual memory segments, forking

has to block the caller until the new incarnation has been given a copy of the

caller's heap and stack segments (the text segment is shared).

In the original Wormos design, a user-level mechanism was provided for an

incarnation to copy another one that is already in the STARTED state. This was

intended for externally checkpointing incarnations, so that their copies could be

used in case of the original's failure. However, it was never used. This was partly

because such a mechanism could only ever be used in the context of i) user-level

synchronisation, so that the checkpointed state would be determinate, and ii) user-

level code to arrange for the two forked copies to identify themselves. When all that

has been achieved, the copied incarnation could as well have forked itself anyway

under the same synchronisation conditions. Only self-forking semantics were

carried over to Equus.

3.2.2 References

Incarnations possess a kernel-managed vector of data structures called references,

which are not readable or writable by user code. References are so-called because

each corresponds to an identifier used in the incarnation's module code. Their data

is used by the kernel to enforce protection against illegal accesses, and to bind the

identifiers to the appropriate physical addresses.

For example, one type of reference is an incarnation handle, which is created

whenever one incarnation creates another. The new incarnation's unique identifier

is returned to the creator. Like all kernel-generated identifiers passed to user level,

this identifier is an integer. When the incarnation uses the identifier of an

 37

incarnation or other kernel-created entity, a reference is looked up which

corresponds with this identifier. Assuming it is found, the reference's data are used

by the kernel to locate the corresponding entity, and also to enforce any restrictions

on the types of operation the possessor can perform upon the entity. It is not

enough to know an entity's identifier: if no corresponding reference is found,

attempted operations are prevented.

There are six types of reference:

1] incarnation handles enable control of an incarnation;

2] streams are interfaces used for message passing;

3] ports are interfaces used for message passing;

4] stream handles are used to reconfigure communications connections;

5] port handles are used to reconfigure communications connections;

6] buffer handles refer to areas of a remote incarnation's address space.

These are fully described as they arise in Chapters 4 and 7. With the exception of

the last, references refer to entities which are part of an RDC's configuration.

Incarnations come to possess references in two ways: either they are created when

the kernel-managed entity to which they refer is created, or when they are copied

and transmitted – propagated – from one incarnation to another, using mechanisms

to be described in sections 4.6 and 5.5.

The use of references is taken from protected link tables in DEMOS [DEMOS87]

and other link-based distributed operating systems. The alternative paradigm to

this is the use of user-level capabilities, as exemplified in the Amoeba distributed

operating system design [AMOEBA86]. Possession of an Amoeba capability enables

protected access to objects managed by kernel- or user-level processes. User-level

capabilities are cheaper to create and propagate than references, and can be used to

provide protection against illegal accesses to objects through encryption techniques,

even when the kernels themselves cannot be trusted. They are therefore suited to

control access to files and other protected objects employed in large numbers in

insecure working environments. Security was not of great concern for the

development environment in which the present work took place. Even if it were,

security against kernel-tampering is relatively straightforward to provide for

physically discrete processor pools, in that they can be locked away from users if

 38

necessary and the individual nodes booted only by system administrators with

knowledge of the requisite password. It is therefore reasonable to assume that

kernels running at pool nodes are trustworthy.

User-level capabilities cannot contain up-to-date physical address information if

the objects they refer to can migrate independently. Therefore whenever a

propagated capability is used first at a node, the referent object has to be located;

and whenever it is used subsequently, the address of its referent has to be looked up

in a cache. With references:

1] the latest address information can be transmitted when a reference is

propagated, and, for frequently used streams and ports in particular, local user

identifiers can be used which contain indices into the vector of references, for

fast lookups of the reference data;

2] addressing information pertaining to an individual reference can be altered

transparently under kernel control;

3] information about relationships between incarnations is available to the kernel;

4] it is possible to constrain propagation to other incarnations to protect against

unwanted operations.

3.2.3 Events

One of the operations available when an incarnation possesses an incarnation handle

is to register an interest in certain classes of events that can occur to the referent

child. By extension, these events can occur to the caller itself. Events include the

completion of communications actions, and notification of changes of state of

incarnations. These are described as they arise in Chapters 4 and 7. Incarnations are

able to a) poll for event information; b) block until one or more of a set of events

occurs; and c) experience a software interrupt when a specified type of event occurs,

which can be handled by a user-supplied function.

3.3 Launching an RDC

The process of starting up an RDC on the processor pool is known as launching.

Users run RDCs from the host workstation with a program called launch which

initialises the RDC, acts as a server process for UNIX file and window services

during its run time, and is used to terminate it.

 39

At launch time the following are carried out (Figure 3.2):

1] The user running launch, as identified by his or her UNIX user name, is

authenticated, and, if he or she is deemed eligible to run an RDC and the

request for nodes as given in launch options can be satisfied, the RDC is

assigned an identifier. The identifier is a bit-string generated so as not to be

repeated at a subsequent launch over a reasonably long period. The RDC is

allocated an initial set of nodes to operate upon. The allocation is normally

made by the pool manager, to which the launch program makes a request.

Certain users are able to launch system RDCs, such as the pool manager itself.

The launch program directly allocates all nodes to these.

2] The RDC's first incarnation, the primary incarnation, is then created by the

launch program. This is of the module which was declared as the 0'th module

when the RDC binary was created. If possible, the initial location of the

primary incarnation is at the node given as a hint by the user as a launch

option. But it can be located elsewhere if this node could not be allocated.

3] This incarnation (and all subsequent incarnations created as part of the RDC) is

provided with communications interfaces which library calls employ to obtain

file services, X11-based window services, and other, Equus-specific services:

UNIX EQUUS KERNELS

pool manager

launch

stream space

name service

= communications
interface

1. node allocation
request & response

2. primary incarnation
created

Figure 3.2: Launching an RDC.

 40

• a name service. Through this service a server RDC is able to register its

services under a well-known text name. Other RDCs interrogating the

name service with this name are returned a communications interface

which they use to communicate with the server RDC. This is discussed

further in Section 5.4.

• the pool manager. After launch time this continues to be responsible for

allocating nodes to RDCs. It also provides automatic load balancing for

them. This is dicussed further in Section 3.4.

• a service implementing a per-RDC construct to be described in Chapter 5,

called stream space.

Equus was not designed to provide a full emulation of any version of UNIX.

Only a small subset of UNIX system calls are available, and they are not accurate

emulations due to difficulties in matching certain failure semantics. Given this, it

would be more satisfactory to the programmer for it to be possible to compile some

modules to run as incarnations under UNIX, and to allow for any UNIX system calls

to be made within such modules. Use of an incarnation running under UNIX to

perform UNIX system calls would require the programmer to use RDC

communications primitives as a common interface between UNIX and Equus

incarnations, through which data is passed to and from the latter. This would be

justified for sophisticated use of UNIX (e.g. full access to X11 facilities). On the

other hand, it is convenient for UNIX file operations, in particular, to be available

directly to Equus incarnations, despite the emulation inaccuracies. This would be

retained.

3.4 Node Allocation

 41

When a node is allocated to an RDC, any incarnation belonging to the RDC can

create incarnations which are hosted there. An incarnation belongs solely to the

same RDC as the incarnation which created it – that is, it bears the same RDC

identifier (initially borne by the primary incarnation). It also bears the same UNIX

user and group identifiers as its creator, so that file accesses can be constrained

according to standard UNIX conventions. The kernel, pool manager and launch

program are together responsible for security against fraudulent use of these

identifiers, and they are kept in sealed kernel tables which can be read by user code

but not altered.

Integer names were chosen for the nodes of the development computer systems

which reflected the underlying topologies. These names are interpreted directly by

the kernel to perform efficient routing. A node descriptor text file with a well-

known pathname is created by the system's administrator to describe nodes'

attributes. For the multi-68030 computer system, one of the form shown in Figure

3.3 was used.

This file defines for each node: i) its kernel-recognised name; ii) a humanly-

recognisable string name; iii) a list of names of groups to which the node belongs; iv)

the node type (jt68030); and v) a list of hardware characteristics of the node (they all

have 4 megabytes of main memory).

 #

 # Pool nodes under machine "kathleen".

 #

 201:kathleen1:systems,all:jt68030:4mb

 202:kathleen2:systems,all:jt68030:4mb

 203:kathleen3:balanced,all:jt68030:4mb

 204:kathleen4:balanced,all:jt68030:4mb

 205:kathleen5:balanced,all:jt68030:4mb

 206:kathleen6:timeshared,all:jt68030:4mb

 207:kathleen7:timeshared,all:jt68030:4mb

 208:kathleen8:exclusive,all:jt68030:4mb

 209:kathleen9:exclusive,all:jt68030:4mb

 20a:kathleen10:exclusive,all:jt68030:4mb

 20b:kathleen11:exclusive,all:jt68030:4mb

Figure 3.3: Contents of Node Descriptor File.

 42

There is also a pool users text file to describe users who are able to launch RDCs.

One of the form shown in Figure 3.4 was used.

This is a list of UNIX user names associated with a list of node groups from

which nodes can be allocated to RDCs launched by the user. The two files taken

together show groupings in which the nodes are divided into: those for use by the

systems programmers for testing development versions of the kernel ("systems");

those used by the pool manager to run RDCs' incarnations with load balancing

("balanced"); those timeshared between incarnations without load balancing being

attempted ("timeshared"); and those to be allocated to RDCs exclusively so that they

can perform their own mapping without interference ("exclusive").

Experience with node allocation policies and load balancing has been limited by

lack of time. Although each type of allocation represented by the node groups in the

above example has been found to be desirable for different types of user

requirement, their simultaneous use has not been attempted, and only limited

experimentation with sub-combinations has been possible. Most commonly, the

"systems"/"exclusive" division was used, but with different numbers of nodes

required in each grouping at different development stages; developers of

autonomously mapped RDCs were therefore constrained to write ones which could

adapt to whatever nodes they were allocated at run-time. Limited node numbers

have meant no more than two "exclusive" allocation groups could be used without

making the groups too small for most experiments.

There is much room for improvement in the understanding which has been

gathered of pool allocation policies based around the types of node usage

represented by the above groupings. However, the following facilities were

 #

 # User groups for nodes under machine kathleen.

 #

 tim:systems,timeshared

 andrew:systems,timeshared

 alivahit:exclusive,timeshared

 esin:exclusive,timeshared

 equus:all

Figure 3.4: Contents of Pool Users File.

 43

prototyped in collaboration with the author's colleague, Mr A. Sherman

[SHERMAN]:

1] At launch time, it is declared through a launch program option whether the

mapping of the RDC's incarnations is to be performed by the system on the

"balanced" nodes, or whether the RDC is to perform its own mapping. A

generalisation of this option which was felt by users to be desirable was for a

list of node groups from which the user wishes nodes to be allocated to be

declarable as a launch option. Then the user could try launching onto

exclusively-allocated nodes, and if this failed launch onto timeshared or load-

balanced nodes by changing the launch program options.

2] Incarnations can find out the RDC's current node allocation – the number of

nodes, their kernel identifiers and current state of loading. The number of

nodes allocated can be of interest even when an RDC runs under the load

balancing service: ten computationally intensive and functionally identical

incarnations running on two nodes may be merely wasting the kernel's time in

context switching, rather than giving a performance gain over two such

incarnations. The nodes' long-term characteristics (for example, processor type

and amount of main memory) can be looked up from their identifiers in the

node description file. The load information is measured as a time average of

the number of processes which are running or eligible to run. It is provided so

that RDCs can measure the effects of their load balancing strategies. On the

multi-68030 machine, load information is obtained cheaply by accessing global

variables stored in the nodes' memories, directly over the VME bus – that is, by

breaking the design assumption of distributed memory nodes. The cheapness

of this operation means that any incarnation is allowed to look up this

information. For the first development computer system, which was a truly

distributed memory system, it would create undesirable message traffic if any

incarnation could gather current global load information by interrogating the

kernels. Therefore the kernels periodically exchanged loading information,

and this information was read locally when incarnations requested it. The

question of incorporating communications load into the kernel load

measurements has not been studied.

3] Nodes which were exclusively allocated are automatically released back to the

pool when the RDC terminates.

In addition, the applications work of the author and another colleague, Mr A.

Sahiner [SAHINER], employed the following interface to pool management

 44

facilities, for the design of server RDCs which adapt their node usage according to

varying client demands. The RDCs run on their initially-allocated nodes, until the

demand for their services increases beyond a threshold value. They then utilise

additionally-allocated nodes, which they release as demand declines again. These

management facilities were simulated through having the "clients" and the "pool

manager" incorporated as incarnations belonging to the server RDCs themselves.

The interface consists of:

4] A call to request extra nodes – ones available immediately if possible, and

optionally ones which become available later. The request may or may not be

satisfied.

5] The reception of a notification informing the caller of either a) a new node

allocation, which the recipient has to confirm it still requires, or b) an

impending node withdrawal, which will occur in a fixed time. These

notifications only arise when a call of type 4] has been made. There is possibly

a restriction on the allocation (the node could be allocated from the

"timeshared" group, or from an "exclusive" group, but with a time limit).

6] Incarnations can voluntarily release a node back to the pool.

Mapping

The node at which a new incarnation is to be created is specified explicitly by its

integer identifier, passed as an argument to the creation call. For RDCs which have

been launched such that the incarnations are mapped automatically by the pool

manager, the node identifiers are discarded by these calls, and a node chosen by the

pool manager is used instead. This is performed transparently to the caller, to avoid

alterations to code being necessary in order for an RDC written to perform its own

mapping to be launched onto load-balanced nodes.

A deficiency of this implemented scheme is that it rests on the assumption that

nodes are homogeneous. If they were not, then the node identifier passed through

to the creation call would not suffice for the pool manager to determine what

categories of node to choose from for the initial and subsequent mappings of the

incarnation. This could be improved by requiring a data structure to be supplied as

an argument to each creation call which contains a node identifier and/or flags

which specify the required characteristics of the node to be used.

 45

3.5 Summary

RDC binaries are constructed from separately compiled components called modules.

These are the blueprints for incarnations. Incarnations are single-threaded and run

in their own address space. They each possess a vector of references which they use

to perform operations upon local and remote entities using location-independent

names, and which constrain their rights to perform these operations. Incarnations

are able to register interest in and monitor the occurrence of events concerning other

incarnations and communications events.

At launch time, the RDC is allocated a set of nodes to operate upon, and the

primary incarnation of the RDC is created by the operating environment. This

incarnation and its children are able to create new incarnations from modules, from

INCHOATE incarnations and by forking. The user launching an RDC can declare

whether the RDC is to map its own incarnations, or whether they are to be mapped

automatically by the pool manager's load balancing service. The node allocation

schemes used with the development computer systems have been outlined.

 46

Chapter 4

Communications

This chapter covers the communications facilities available to the programmer in the

RDC model. It describes the primitives that incarnations use to communicate, and

the structural components via which communication takes place.

4.1 Message Passing Requirements

The message passing primitives to be described are designed to be used both

directly as they are and as part of the run-time support for RPC and object

operations:

1] an incarnation sends a "request": a message, a remote procedure call or an

operation on an object;

2] the request is queued;

3] the request is received by one or more incarnations which process messages/

implement remote procedures/ implement objects;

4] as a result, these may generate a reply message/ return output procedure

parameters/ return output operation parameters.

The RDC model incorporates primitives for asymmetrical message exchanges of

the form 1] - 4], called invocations. Under invocations, requests are streamed so that

reconfigurations can be made which change the request stream's association with

one or more incarnations that process the messages, implement the procedure calls

or implement the object operations. A request stream is not to be confused with a

byte stream: requests are discrete units of data, and can only be transmitted or

received discretely. A request stream does not by itself constitute a complete

 47

communications interface. It is a structural component which serves to distinguish a

series of requests, but for a remote procedure call system, for example, there are

additional functional requirements of naming and binding, interface type matching

and parameter marshalling and unmarshalling. All of these are orthogonal to the

present configurational concerns and are left to other layers to manage.

The association of request streams with receiving incarnations is achieved by

intermediate routing constructs called channels. Channel-based reconfigurations

affect the destination of future request messages sent over given streams.

The other structural component supported directly by the kernel and of

relevance to communications reconfigurations is the message queue. Firstly,

message queues are necessary to allow for asynchronous interactions. Secondly, as

long as a request is in a queue and has not been received by an incarnation, a

decision can still be taken as to which incarnation consumes the request. This issue

will be taken up in the discussion of peer server incarnations in Chapter 6.

4.2 Invocations

To match the interactions 1], 3] and 4] above, an invocation consists of: i) the sending

of a message – the invocation message – by an incarnation using a type of reference

called a stream; ii) the receipt of this message by one or more incarnations, each

using a type of reference called a port; and, in some cases, iii) the sending back of a

reply message using a handle generated automatically when the invocation message

was received. By using the appropriate handle, reply messages are routed back to

the call which transmitted the corresponding invocation message, whatever

reconfigurations may have occured meanwhile.

A message consists of:

• A 32-byte untyped header, used either for containing the entire message data

or for identifying accompanying extra data;

• An optional block of untyped extra data which can be as large as fits

contiguously in the virtual address space of the sender;

• An optional reference descriptor, used for propagating – sending a copy of – a

reference to another incarnation, as described in Section 4.6.

Although use of untyped messages can be error-prone, the basic message-

passing primitives have been found to suffice for writing applications running on

 48

the homogeneous target processors. Facilities could be improved through library-

supplied utility functions: Isis [ISIS], for example, provides the msg_put function to

marshal a list of C data items and structures on to an array of bytes, and the msg_get

function to unmarshal the data. Dynamic buffer management for marshalling is

available through the malloc and free library calls.

4.3 Channels

Incarnations come to be connected via channels, which are the referents of streams

and ports (Figure 4.1). A channel is an unbuffered routing medium, over which

invocation messages are sent using streams attached to it. These messages are then

received using ports attached to the same channel. Whereas streams are attached to

at most one channel, a port can be attached to more than one so that the output of

several channels can be merged at it. Furthermore, an incarnation can receive

messages from more than one port. By connecting and disconnecting incarnations

to and from channels by changing their stream and port attachments, different

communications relationships are made possible, potentially transparently to the

incarnations concerned.

A channel is either unicast – in which case only one port can be attached and so

be a destination for invocation messages at any one time; or it is multicast – in which

case the kernels attempt to deliver identical copies of each invocation message sent

port

stream

channel

unicast multicast

invocation
message

reply
message

Figure 4.1: Invocations Take Place Using Streams and Ports Connected via

Channels.

 49

over it to all incarnations with attached ports. By dynamically acquiring and

destroying ports, incarnations join and leave multicast groups, without the

knowledge of any incarnation sending invocation messages over the channel. The

same port can be simultaneously attached to both types of channel.

4.3.1 Unicast Message Primitives

The complete set of primitives for sending invocation messages is given in Table 4.1,

and the other communications primitives are given in Table 4.2.

Only inc_invoke is synchronous, and it is the only primitive that can obtain a

reply. No separate action is necessary to get the reply: if a reply is made, the reply

message overwrites that used for transmission whilst the call is blocked. This is

satisfactory for many cases, and using separate message buffers for transmission and

reply would increase the cost of this call. The receiver sets a flag to choose whether

a caller of inc_invoke is to be unblocked immediately upon receipt of the invocation

message (therefore without receiving a reply), or unblocked later with a call to

inc_reply. If no application-level reply data are required, it is cheaper for the kernel

to provide an acknowledgement than for the receiver to make a redundant call to

inc_reply, involving a user-kernel context switch. When the receiver blocks the

sender, a reply handle is returned to it. With this, it can either reply after due

processing of the invocation message (and in the meantime it can receive other

invocation messages); or, to allow a programming scheme in which one of its peer

incarnations replies instead (on the basis, for example, of its specialised

functionality), it can forward the received message over another stream, using

inc_forward. In that case, the next recipient receives a copy of the message which is

identical except that its header can have been modified by the forwarder.

1 Used over a multicast channel, inc_send guarantees delivery only to at least one attached port

primitive synchronous? message size reply? delivery multicast?

inc_invoke yes unrestricted optional reliable no

inc_asinvoke no unrestricted no reliable no

inc_send no up to 1.5k no reliable1 possible

inc_dgram no up to 1.5k no unreliable possible

Table 4.1: Invocation Primitives.

 50

Meanwhile, the original sender remains blocked until replied to, and the message

forwarding is transparent to it.

inc_asinvoke is used for sending invocation messages asynchronously. Its name

reflects the fact that it was at an early stage planned for it to be possible to obtain a

reply message resulting from a call to it, as with inc_invoke. Kernel mechanisms to

support such a feature would be redundant, however, since, as will be described, a

stream can be propagated in the message sent using inc_asinvoke, which a receiver

can then use to send a reply message back with an existing invocation primitive.

inc_send is used as an alternative to inc_asinvoke for sending small amounts of

data (up to 1.5 kilobytes). Whereas extra message data sent using inc_send are

copied immediately out of the sender's address space, extra data supplied to

inc_asinvoke remain buffered in the caller's address space. This is discussed further

in Section 4.4.2.

inc_dgram is the same as inc_send except that no underlying delivery

acknowledgement is sought by the kernel, making message transmission times up to

half those of inc_send. Although delivery is usually achieved with inc_dgram, unlike

the other invocation primitives it cannot be relied upon.

4.3.2 Multicast

Only inc_send and inc_dgram can be used to send invocation messages over multicast

channels. inc_send is deemed to be successful if the message was delivered to at least

one port, so it can be used to find out whether at least one member of a multicast

group of incarnations is reachable, but does not guarantee delivery to all ports

primitive function

inc_receive receive an invocation message at a port

inc_reply reply to an invocation message using reply handle

inc_forward forward an invocation message over a stream

inc_copyto copy data to a remote buffer using a buffer handle

inc_copyfrom copy data from a remote buffer using a buffer handle

Table 4.2: Non-Invocation Communication Primitives.

 51

attached to the channel. As in the unicast case, no delivery guarantees are made for

inc_dgram.

This choice of low-level multicast facilities is to be compared with, for example,

Isis's reliable broadcasts [ISIS] or LADY's facility to stipulate a number of implicit

delivery acknowledgements which are to be received for a multicast to be deemed

successful [LADY]. The choice made for the RDC model is a result of i) the decision

to add multicast after the original unicast primitives were designed, and ii)

designing for simplicity of the basic model and its implementation. The following

factors had to be taken into account:

1] inc_invoke is only designed to get one reply. If multiple replies were to be

received as a result of a multicast, either a separate multicast version of this

invocation primitive would be required, or the other replies would have to be

obtained with separate system calls – the approach of the V-system.

2] Transparent reliable multicast is only possible if the number of ports attached

to the channel is known to the issuing kernel. The kernels would in that case

have to maintain a consistent view of this, even though ports can be

dynamically created and destroyed, and streams attached to the channel and

requiring this knowledge can be propagated to arbitrary kernels. As things

stand, no global knowledge has to be kept of ports attached to a given channel;

the design relies upon an underlying physical broadcast facility by which a

packet can be received at all nodes. Only those kernels managing ports

attached to the designated channel accept the arriving packet.

3] The problem of reliability in the absence of global knowledge about ports

extends to inc_asinvoke.

4] The utility of LADY's partial-success multicast semantics (defined by

specification of the minimum number of acknowledgements required) was

unclear in the absence of hard application requirements. It was decided to

leave partial-success and reliable semantics to the application layers, rather

than provide kernel support for them. To implement higher layers of

multicast, inc_dgram can be used to multicast messages, which recipient

incarnations acknowledge using streams connected to the multicaster. Bulk

data can be transferred by enclosing in the small multicast message a buffer

handle referring to the bulk data to be multicast (buffer handles are described

in Section 4.5). Multicast atomicity and serialisability, which are addressed in

 52

the Isis work and the Amoeba work ([KAASHOEK]), are also left to application

layers.

4.4 Ports

A port is a queue of invocation messages which have arrived at an incarnation over

one or more channels. Ports can become unattached as a result of reconfigurations:

an unattached port can have a non-empty queue of messages which arrived during

(a) previous attachment(s), although no further messages will be appended to it in

this state. Messages are queued in the order in which they arrive at the port. Two

messages sent using different streams could appear in a different order to that in

which they were sent, but the kernel guarantees that messages sent using the same

stream are queued in sending order (unless inc_dgram was used).

Invocation messages are received using the same primitive, inc_receive,

regardless of which invocation primitive was used to send them. inc_receive

removes messages from the queue. If no suitable messages are present, the caller is

blocked indefinitely, or for up to a specified timeout period. The kernel can

distinguish between the streams used to send the messages queued at a port, and it

is possible to receive only those messages sent from a particular source stream. This

selectivity makes it possible to receive, say, a second message from a specific client

(or rather, stream) without interleaving with the reception of messages from other

clients at the same port.

An incarnation is able to possess multiple ports in order that:

1] Different ports can be associated with messages of different functionalities. An

incarnation receiving messages of (application-specific) type a at port A can

continue to do so until it is ready for a message of type b at port B without the

programming problem of interleaving the processing of two kinds of message

at a single port.

2] Clients can be grouped together. By associating a set of clients with one port, a

server is able to handle their invocation messages equivalently with respect to

the data they operate upon.

3] Any port can be set so that a software interrupt is generated upon the arrival of

a message there; a handler function is specified, to be called asynchronously

when this event occurs. This is useful for implementing management

operations which execute independently of the incarnation's main thread of

 53

control (but which can be blocked during critical code sections, like hardware

interrupts). An example of such a management operation is a monitoring

operation, which returns the current state of the incarnation to the requestor.

Using the event mechanism, it is also possible to find out which of a set of ports

have messages for receipt, to avoid blocking in awaiting a message from one port

when another port has messages of interest.

Where considerations 1] - 3] above do not apply, the need to use the event

mechanism is an argument against the use of multiple ports for multiple clients, as

opposed to use of a single port with clients and functions distinguished by message

data. It adds to the performance overheads of reception by necessitating regular

event-related system calls, and adds to program complexity. A second argument in

favour of using one port is that, if clients are anyway indistinguishable, a client can

be connected or removed transparently.

4.4.1 Message Queues

By queuing invocation messages in ports local to the incarnations which receive

them:

1] The set of messages awaiting reception at an incarnation is known locally.

Examining the number of these messages and their application headers is then

potentially a cheap means of being able to estimate the amount of processing

these messages represent when considering whether a reconfiguration is

desirable on the basis of workload.

2] The current message queue can be divided and some of it moved to a different

incarnation's port if required as part of a reconfiguration. This will be

described in Chapter 6.

3] But, for a port local to another incarnation to become the new destination for

messages, all connected streams have to undergo address rebindings.

The alternatives considered were:

a] to enqueue invocation messages locally to their issuing kernel. This would

leave unreceived messages untransmitted regardless of any reconfiguration to

change the identity of the incarnation to receive them, and so amortise the costs

of achieving this. But it would make the information of 1] expensive to obtain,

since the queue could be distributed at more than one kernel. And it would

 54

complicate the logic necessary for reception of invocation messages sent using

multiple streams.

b] to queue invocation messages at a fixed location for each channel. The

information of 1] would again be available at a single place. And this

arrangement has the advantage over the implemented scheme of not requiring

new address bindings to be made if a new incarnation takes over receiving the

messages. But it can be expected to add significantly to the cost of receiving

each message (as would alternative a): it could as much as double the end-to-

end transmission times of individual messages, by making the reception of a

message potentially as expensive as the operation of delivering the message.

On balance, it seemed preferable to keep message transmission times at a

minimum during normal, unreconfigured operation, and to concentrate on efficient

mechanisms to rebind streams and move message queues.

 The concept of a shared queue with multiple receivers arises naturally out of the

idea of a queue with a fixed location. The LOCUS distributed operating system

[LOCUS] supports pipes with multiple readers. The pipes are implemented at a

storage node that remains fixed as the set of nodes hosting readers and writers

varies. Although kernel support for this construct could make its implementation

more efficient than is achievable through use of an incarnation to manage a shared

queue at the application level, the application level approach is preferable. For a

queue is only one of the different abstractions of shared message collections which

can be required at the application level. These include, for example, sets of messages

distinguished according to task types, and multiple queues of prioritised messages.

It is the job of an application-dependent scheduler to provide such facilities, and not

that of the kernel.

4.4.2 Asynchronicity and Buffering

After the experience of the first implementation, it was decided that the kernel

would not buffer messages bigger than could fit into a single underlying

communications packet – the largest block of data which can be transferred

contiguously over the underlying physical network. The size restriction on

messages sent using inc_send is chosen to match the packet size. Each kernel

message buffer either contains all of a message's data, or is a header containing a

packet's worth of the message data, and address information to enable the rest of the

data to be fetched when an incarnation performs a call to inc_receive, and thereby

 55

provides a user-level buffer for the data. The rationale for this consists of two

points:

1] By imposing a limit on the amount of each message's extra data which can be

held queued awaiting reception in a kernel message buffer, and by furthermore

imposing a limit on the total amount of this buffer capacity which the kernel is

prepared to devote to a single incarnation, the overall buffer capacity required

by the kernel is limited and buffer management is reduced to handling buffers

of a small number of fixed sizes (currently two).

2] If a queued message is transmitted to another port (queue) as part of a

reconfiguration, only the first packet of the message data is transmitted twice.

The rest remains in the caller's address spaces until the message is eventually

received.

It is the responsibility of the programmer not to re-use a message buffer until the

kernel has finished reading it. The event mechanism can be used to find out when a

particular call to inc_asinvoke has completed. As an alternative to using the event

mechanism, the programmer is able to set the value of the so-called buffer limit of

each individual stream, in order to control the use of buffers automatically. If the

number of calls to inc_asinvoke from and including the first one which remains

uncompleted equals the value of this limit at the time another call to inc_asinvoke is

made, the call will be blocked automatically until the first such call has completed.

By maintaining a circular list of buffers which are in number one more than the

value of the buffer limit, and using them in strict rotation, no buffer can be

overwritten prematurely, and no event management code is necessary. These

mechanisms are intended for use in the implementation of library calls. The

constraint on asynchronicity which this scheme makes is not an unusual

shortcoming of this design: any run-time support system for asynchronous message

passing has a buffering limit which when reached will cause the caller to be blocked.

A shortcoming of this implementation of asynchronous message passing is that it

limits concurrency. The transfer of bulk message data sent using inc_asinvoke could

in principle overlap with the execution of the incarnation which later receives it.

Instead, it is forestalled until the receiver is ready. Charlotte [CHARLOTTE87]

provides an asynchronous receive primitive, which provides a user buffer into

which the kernel can receive bulk message data whilst the caller executes

concurrently. It has not been investigated how such a primitive could be

incorporated into the RDC model, nor what performance advantages can in fact be

achieved when message reception and incarnation execution, although concurrent,

 56

take place via the time-sharing of a single CPU. Asynchronous reception appears to

violate the separation between message queueing and message reception which is

presupposed when considering reconfigurations which re-queue unreceived

invocation messages at other ports. In fact, however, it would be possible for the

kernel to "unreceive" messages by resetting its pointer to those user buffers which

had been overwritten. Buffers supplied in a call to the asynchronous reception

primitive would have to be assumed by the programmer to be filled with garbage

thereby, until notification by the kernel that they contained message data.

Failure

All the invocation primitives except inc_dgram attempt at the time of the call –

whether they are asynchronous or not – to deliver the message or part of the

message to at least one destination port, and await a reply message or a kernel-

generated acknowledgement. If neither is received despite a system-defined

number of attempts, the call fails with an appropriate return code. If an invocation

message is sent using inc_asinvoke, however, it is possible for the node to which it is

delivered to fail after it has been queued but before it has been received. In that

case, it is the application writer's responsibility to decide that a problem has

occurred: the kernel will regard the call as one that is never completed, and provide

no information about the failure.

Events and Threads

The event mechanism could be used in the construction of a user-level threads

package, using which threads can be assigned ports from which they receive and

process requests asynchronously with respect to one another. Using the event

mechanism, the run-time support system for such a package could tell whether a

communications call issued by a thread would block the incarnation. If so, it could

deschedule the current thread and schedule another thread which can make a non-

blocking communications call.

4.5 Buffer Handles

A buffer handle is a reference which enables the possessor to read from or write data

directly into a data area (buffer) in the address space of another incarnation. The

data area is specified as a vector of bytes which is readable and optionally writable,

to which a handle is propagated to another incarnation. The possessor of the handle

then uses the primitives inc_copyto and inc_copyfrom, which are based upon the

copyto and copyfrom primitives of the V system [V84]. They each take as arguments

 57

the offsets from the beginning of the remote buffer from which data are to be written

or read respectively, the start address of a corresponding local array and the number

of bytes to be copied. Unlike the V-system, their use implies no synchronisation

with the remote incarnation. If synchronisation is required then it has to be

achieved through message passing. The rationale for buffer handles is as follows:

1] If transmitted message data is not to be overwritten by a reply, the sender is

able to include a buffer handle with the invocation message, so that the reply

data can be written into a separate buffer in the caller's address space.

2] They allow for selective data transfer, as opposed to only being able to transfer

entire or truncated arrays with ordinary message passing. Work on image

processing applications has revealed a requirement to copy rectangular sub-

sections of two-dimensional data in addition to contiguous linear sections: so

that an image section could be obtained in a single primitive. This remains to

be implemented, however.

3] They can be used to avoid transmitting data more than once. By sending a

buffer handle instead of transmitting data in a message, a client enables a

server incarnation to choose one of its peers or worker incarnations to process

the client's data, without the data being transmitted twice. Instead, the server

incarnation propagates the buffer handle, and its peer or worker fetches the

data directly from the client's address space.

4] They can be used to increase concurrency: one or more incarnations can use

buffer handles to read or write a buffer multiply before synchronising with the

buffer's owner using invocations.

5] In particular, they can be used to multicast bulk data, by including a buffer

handle in a multicast message, which the recipients use to copy the data

concurrently and then issue acknowledgements to the sender.

4.6 Sending References in Messages

The semantics of sending a reference in a message is that a copy of the reference is

sent – not the original. Propagation semantics was chosen over transmission

semantics because i) it does not require a separate primitive to duplicate a reference

before sending it in a message; ii) it extends naturally to multicast, whereas a single

reference cannot be transmitted to multiple destinations.

 58

A copy of a reference is one which has the same referent. It is a handle to the

same incarnation, a stream or port attached to the same channel(s), a handle to the

same remote buffer or a handle to the same port or stream. The semantics of

propagating a port attached to a unicast channel requires further description, which

will be given in Chapter 6. The reference descriptor component of a message

contains a field for the local identifier of the reference to be propagated, and a flag

which if set causes this reference to be destroyed upon propagation. Reference

transmission can therefore be simulated. However, a propagated reference is not in

general completely equivalent to that used for propagation. Firstly, a stream handle

or port handle referring to the original does not refer to the new reference, even

though the original may be destroyed and the new one is thenceforth functionally

equivalent to the old. Secondly, flags in the reference descriptor can be used to

modify the copy relative to the original:

1] The rights flags are currently used for altering read/write rights to read rights

in the case of a buffer handle, for reducing the set of control rights in the case of

an incarnation handle, and for determining whether the recipient of a port

obtains the queue of messages which otherwise remains at the original port.

The last two cases are taken up in context in Chapters 6 and 7.

2] A flag can be set to remove propagation rights from the recipient in relation to

the received reference. This is for use where a server's designer wishes to

ensure that invocation messages received over a certain port can issue from

only one stream. This might be either because its message processing

algorithm assumes an ordering which could be violated by multiple clients, or

because a change in the set of its clients would affect the ability to reconfigure

the server.

Propagation through message passing is the only kernel-supported means of

propagating references. It will be shown in the next chapter how this basic

mechanism is used to underpin higher-level mechanisms for the establishment of an

RDC's configuration and for the propagation of references between its incarnations.

4.7 Summary

Incarnations can communicate using messages exchanged during synchronous or

asynchronous interactions called invocations. They also can pass data

asynchronously using buffer handles.

 59

Invocation messages are transmitted via references called streams over routing

components called channels, which can be unicast or multicast. Messages are

queued for reception at references called ports. The use of message queues is an

important aspect of the model in relation to reconfigurations, which will be taken up

in chapter 6.

It has been described how incarnations can be dynamically created and mapped,

by forking and by use of modules and INCHOATE incarnations. It is now possible

to go on to show how they are created in a state of connection to other incarnations,

as part of an initial RDC configuration.

 60

Chapter 5

Configuration & Propagation

This chapter describes the mechanisms by which the initial configuration of an RDC

is established. The first problem set down in Section 2.4.2 was how to achieve this

for the text processing RDC, and that example is taken up again here. The chapter

describes stream space in sections 5.4 and 5.5. This is a construct used in the run-

time support for configuration establishment. Stream space has a wider role, for

propagating references, and this is described.

5.1 Experience with the First Design

In the design of the original operating environment, Wormos, no special provision

was made for the establishment of an RDC's initial configuration. An RDC had to be

set up at run time using the following facilities, by the primary incarnation (and

other incarnations in the creation tree):

1] There are primitives to:

• create a new channel with an attached stream and port;

• create a port attached to an existing multicast channel, referred to by a

stream.

2] Every new incarnation is created with a so-called standard port, analogous to

the standard input of a UNIX program. The creator obtains automatically a

stream connected to this port. Any structure can be established by using this

automatic connection to propagate streams attached to new channels created

by the new incarnations and their creator, with the primitives of 1].

 61

This was a tedious and error-prone programming activity. Library calls were

written to lessen the burden of this, but these still had to be explicitly made as part

of the preamble to application code in every non-primary module.

5.2 Establishing a Configuration

The improvement achieved in the most recent operating environment, Equus, is for

the programmer to be able to declare the connectivity between incarnations, and not

be concerned with how connections are realised. No kernel changes were needed to

achieve this. The facilities described in 1] and 2] above are still provided by the

Equus kernel. But their use is hidden in a user-level run-time support system which

makes declarative connection possible. This is now described through the text

processing example.

5.2.1 Setting Up the Text Processing RDC

Figure 5.1 shows the complete structure for the text processing RDC introduced in

Section 2.4.2. The manager is assumed to be the primary incarnation. This

"printer1"

"report"

workers

printer
spooler

manager

"scheduler"

scheduler

port

stream

channel
key

Figure 5.1: Initial Structure of Text Processing RDC.

 62

incarnation establishes the rest of the RDC's configuration, and initialises the RDC

before entering into a monitoring mode. The details of its decision about the

number of workers to create and about the RDC's mapping are not of concern here.

In order to be able to declare the configuration of any RDC, every channel

employed in the structure is assigned a character string label of the programmer's

own choosing. The means by which channel labels are assigned at run time will

shortly be described.

In the example, each worker has a stream attached to the channel labelled

"scheduler". Task acquisition by the workers can be implemented using inc_invoke

over this stream. The scheduler possesses a corresponding port attached to the same

channel, which it uses to receive these requests. Each worker also possesses a

stream attached to the channel labelled "printer1", using which it sends processed

document data asynchronously with inc_asinvoke. The printer spooler uses a port

attached to this channel to receive this data. The printer spooler is programmed to

send information periodically using a stream attached to the channel labelled

"report". The information is received by the manager.

The call inc_create (used to create a new incarnation: Section 3.2.1) requires an

argument to declare the new incarnation's arguments and interfaces. This argument

is given as a pointer to an instance of the C structure shown in Figure 5.2,

IncParams.

Before calling inc_create, an incarnation ("the configurer") makes declarations

concerning the interfaces of the new incarnation. It does this using calls to library

functions which set fields of the interface structures in the array pointed to by the

field ip_ifaces (Figure 5.2). The data arguments and interface structures are copied

automatically to the new incarnation (a pointer to another IncParams data structure

appears as a main program argument). Each IncInterface structure in the new

typedef struct {

 int ip_datasize; /* size of data arguments in bytes */

 char *ip_dataargs; /* pointer to data arguments */

 int ip_nifaces; /* number of interfaces */

 IncInterface *ip_ifaces; /* interface declaration structures */

} IncParams;

Figure 5.2: Data Structure Used to Declare Arguments and Interfaces
(streams and ports) for New Incarnation.

 63

incarnation, however, has a field containing the identifier of a stream or port that the

run-time system has generated. The stream and port identifiers can be extracted by

the new incarnation on the basis of the corresponding indices in the interface array

(which are known by compile-time convention or through data in the argument

structure).

The configurer declares interfaces as being attached to labelled channels. By

specifying the labels in a consistent way, the desired connectivity is effectively

declared between the port of one incarnation and the stream of another.

Connectivity will be achieved via the common channel.

The following are example calls of the interface declaration functions. interfaces

is an array of IncInterface data structures pointed to by a data structure of type

IncParams, and n is the index of the interface in this array.

• ss_isStream(&interfaces[n], label1, handle_label1)

Interface is a stream attached to channel labelled label1; a stream handle

referring to the stream is to be generated, and labelled handle_label1, if this label

is non-null.

• ss_isPort(&interfaces[n], CHAN_NEW, label2, handle_label2)

Interface is a port attached to a unicast channel to be created as a result of this

call (CHAN_NEW) and labelled label2; optionally, a port handle referring to the

port is to be generated, and labelled handle_label2.

• ss_isPort(&interfaces[n], CHAN_OTHER, label3, handle_label3)

Interface is a port attached to a multicast channel declared to be created

elsewhere (CHAN_OTHER) and labelled label3; a port handle is optionally

generated, and labelled handle_label3.

In addition, there is a function which is necessary for a configurer to create a labelled

channel to which it itself owns an attached port:

• ss_createChan(label4, chantype, &port, &stream)

The channel is declared to be labelled label4, to be unicast or multicast

according to the value of the argument chantype, and the identifiers of an

attached port and stream are returned in port and stream.

 64

We now return to the example. To set up the rest of the text processing RDC, the

manager incarnation makes inc_create calls to:

1] create an incarnation from module scheduler. It is declared to have a single

communications interface: a port attached to channel scheduler. The channel is

to be created as a result of this declaration.

2] create an incarnation from module worker. It is declared to have two

interfaces: a stream attached to channel scheduler, and a stream attached to

channel printer1. Repeat for the other workers.

3] create an incarnation from module printer_spooler. It is declared to have two

interfaces: a stream attached to channel report, and a port attached to channel

printer1. The latter channel is to be created.

Mapping is realised by supplying the appropriate node identifier to each inc_create

call.

The manager must also declare the remaining channel to be created. It calls

ss_createChan to:

4] create a unicast channel, named report. The call creates a local port attached to

the channel.

This completes the description of the actions which the manager incarnation has to

make in order to declare the structure shown in Figure 5.1.

5.2.2 Discussion

The general programming scheme just presented for establishing a configuration has

the following features:

• The programmer is neither concerned with how stream-port connectivity is

realised nor with the order in which channels and incarnations are created.

The manager's actions 1] - 4] above could in fact have been made in any order.

Moreover, for incarnations dynamically configured in this way, no module

code is expended on the configuration.

• Channel labels, being character strings, are conveniently manipulable within

the C language. The labels can be chosen for human readability to reflect both

function (e.g. "scheduler.task_rqst", "scheduler.manage_rqst") and multiplicity

("worker0", "worker10").

 65

• Any RDC structure can be created under this scheme. Character string labels

can be generated for an arbitrary set of channels to connect any run-time

variable set of incarnations with any combination of streams and ports.

• The programming scheme has been described in a context in which only one

incarnation (the configurer, or the manager in the example) sets up the rest of

the configuration. It is natural for the manager to execute step 4], since this

results in the creation of a port which the manager requires. The steps 1] - 3],

which declare the creation of the other incarnations, however, could in

principle be followed by any other incarnation belonging to the RDC. For

example, if 100 worker incarnations were to be created rather than 4, or any

number sufficiently large for the cost of calling inc_create iteratively to be non-

negligible, then the manager could fork itself so as to divide this task in two.

• By declaring that a unicast channel is to be created in the same call as the

declaration of its attached port, inefficiencies are avoided in the operations of

the run-time support system. For this convention enables the system to create

the port at the incarnation which is to possess it, and to propagate streams with

the correct physical address information corresponding to the port. If the

creation declaration of a unicast channel was made in a separate call to the

attached port declaration, the ultimate physical location of the port would not

necessarily be known at the time attached stream interfaces were created.

When these streams were first used, a kernel location mechanism would have

to be invoked to determine the port's physical address. Any invocation

messages already sent over the channel before the port was created would also

have to be re-located.

5.2.3 Dynamically Adding A Worker

The manager can add a new worker dynamically to this RDC. The manager is

assumed to have registered interest in extra node allocations from the pool manager.

It created a channel and sent a stream attached to this channel as an argument to this

registration call. Upon receiving a notification message at the corresponding port,

informing it of an extra node allocation, it creates a new worker. To do this is no

different to creating the original workers. The channel labels remain valid

throughout the run-time of the RDC. Worker addition is transparent to the worker

and its extant worker peers. The scheduler and printer spooler may or may not

require notification of the addition by the manager, according to application

requirements.

 66

5.3 Forking

The forking facility, by its nature, involves design decisions about how to treat the

references of the incarnation which performs the fork when they are copied to the

new incarnation, rather than about how to declare new interfaces. The overiding

concern is for it to be possible to integrate a forked incarnation into the existing RDC

structure in such a way that maximum choice is left to the application writer, but for

useful defaults to be provided.

When an incarnation forks itself, non-port references are automatically copied –

with the same local identifiers and without modification of referent or rights – to the

new incarnation, unless their propagation was disallowed, in which case they

become invalid in the new incarnation. It seemed most useful for the new

incarnation to possess, by default, streams attached to the same channels, and

incarnation, buffer, stream and port handles referring to the same incarnations,

buffers, streams and ports as in the original.

Ports attached to unicast channels cannot be attached to the same channel in the

two incarnations, whereas corresponding ports attached to multicast channels can

be. It was decided that, by default, ports in the new incarnation would be

unattached. This means that the application writer can control the point at which

the new incarnation becomes integrated into the rest of the structure, for messages

cannot immediately arrive at its ports.

To overide the default, the forker can specify a list of its ports which are to be

attached in the new incarnation. It may be necessary to use existing port identifiers

in the forked child, to avoid inconsistencies with stored values, so these ports retain

their identifiers. The ports are specified as either a) to be attached to a multicast

channel, so that the incarnation can be automatically included in a multicast group;

or b) to become attached to a new unicast channel, in which case a stream attached

to the new channel is returned to the forker. The original can then propagate these

streams to other incarnations, or employ them in reconfigurations to be described in

the next chapter. Attachments not covered by this scheme can if necessary be

programmed. As an example, Figure 5.3 shows code to establish two connected

stream-port pairs which can be used to propagate references in either direction.

 67

5.4 Propagation

Every incarnation possesses by default a stream connection to a name service

(Section 3.3). A library call to look up name entries takes a well-known character

string service name and sends it using this stream to the name service. The service

name is looked up. If it is registered, a stream connected to an incarnation

belonging to the service RDC and supplied by it is associated with it. A copy of this

is propagated to the caller. Conversely, RDCs wishing to supply a service are able

to register themselves under an agreed name. This is the only way that an

incarnation can come to possess a stream to communicate with an incarnation

belonging to another RDC, apart from the few system-supplied streams it owns by

default.

Once a stream to a service is obtained, it may, according to the service, either be

used to make requests directly, or be used to request a connection to the service.

The server incarnation initially contacted may want to a) validate the connection

int forkstreams[1], forkports[1], fork_result;

int stream_to_parent, stream_to_child, my_port;

unsigned int new_inc, new_node;

inc_chanCreate(CHAN_UNICAST, &my_port, &stream_to_parent);

forkports[0] = my_port;

fork_result = inc_fork(new_node, &new_inc, 1, forkports, forkstreams);

switch(fork_result) {

 case 1: /* original */

 stream_to_child = forkstreams[0];

 inc_close(stream_to_parent);

 ...

 case 0: /* new incarnation */

 /* stream_to_parent connected to original's my_port */

 /* my_port is here attached to a new channel */

 ...

 default: ...

}

/* Each now has a stream connected to the other's my_port */

Figure 5.3: Code to Fork a Child.

 68

request, or b) associate the client subsequently with another incarnation belonging

to the RDC, according to the type of connection request, for example, or the load

conditions. A successful connection request can therefore be returned a new stream

connected to a different server incarnation.

If a service request includes references – for example, a stream to return results

asynchronously, a buffer handle to read or write request data – then these will have

to be propagated by the client in messages. The details of this are liable to error and

are cumbersome, and so are hidden behind a service stub procedure supplied as a

library call by the service provider.

The details of the propagation of references in messages are, sometimes at least,

hidden behind procedural interfaces to system services. Details of reference

propagation are also hidden behind the mechanisms for configuration establishment

described above in Section 5.2. The remaining case is that in which it is necessary to

add a new connection between two incarnations belonging to the same RDC which

were previously configured with no direct connection between them. The next

section describes reference propagation facilities which improve upon the use of

messages for this purpose.

5.5 Stream Space

When an incarnation propagates a reference to another in a message, a connection

(or series of connections) is required for sending it, but the two incarnations might

have no other use for this connection. Stream space was introduced into the model

as a means of decoupling incarnations when references are propagated between

them, to avoid this state of affairs. It is a repository, into which references can be

placed, and out of which they can be fetched. To propagate a reference, one

incarnation puts a copy of it into stream space, and the other takes a copy of it out.

Since stream space can contain multiple items, a character string label is used to

label the reference at the time it is deposited, and to identify it when a copy is

requested.

Despite its name, any kind of reference can be deposited in stream space. A

reference can either be propagated to indefinitely many incarnations in this way, or

it can be specified at the time of deposition that only a certain number of copies of

the reference can be taken out of stream space at any one time. The ability to restrict

the number of copies is provided for programming schemes in which it is required

that only, say, one incarnation is able to perform certain invocations until it yields

 69

the necessary stream for use by another, by placing it back in stream space. For

example, it can be ensured in this way that at most one writer at a time is updating

shared data managed by an incarnation, by using separate ports for write and read

invocations, and limiting the number of extant streams connected to the write port

to one. Qualifications applying to the special case of propagation of a port attached

to a unicast channel are described in the next chapter.

Placing a reference in stream space is asynchronous: no results need be returned

and the caller of the relevant primitive is not blocked. Two primitives are required:

ss_put is used to deposit a reference initially in stream space, ss_return is used to

return one of a limited number of copies after it has been obtained from stream

space. The primitive to fetch a reference, ss_get, is synchronous. If no reference with

a matching label exists, the caller is blocked indefinitely until one is deposited in

stream space.

Apart from the fact that stream space can contain all reference types, and not just

streams, it differs from a name service in two fundamental respects:

1] stream space exists privately and independently for each RDC, and does not

persist beyond the RDC's execution. The contents of stream space are assumed

to be needed only by the RDC's current incarnations and any they may create.

2] a name service request will return immediately with a failure code if supplied

with what turns out to be a non-existent service name. In the case of stream

space, the run time system is not in a position to decide how long to keep an

unsatisfied request pending: it may be a programming error, or there may

legitimately be an indefinite delay. A separate stream space fetch call which

polled or waited for up to a specified period of time before returning if

unsatisfied was considered, but it was decided that this would only complicate

matters for the programmer. A primitive is provided, however, that prints a

description of the current contents of stream spaces and the current set of

requested labels, in order to aid in debugging.

5.5.1 Stream Space and Initial Configuration

The labelling of channels in the configuration declaration scheme of Section 5.2 are

realised through labelled streams attached to the channels, which are deposited in

stream space. The application is free to obtain copies of these from stream space, but

only after the call which declares the creation of the channel has taken place. An

 70

attempt by the configurer to fetch a stream attached to a labelled channel before this

point will block forever.

Similarly, labelled handles to stream and port interfaces (declared in the calls of

Section 5.2.1) are also deposited in stream space with the given labels. The

programmer is in this case required to observe a stronger convention to avoid the

possibility of deadlock: no attempt should be made to fetch them from stream space

until all creation declarations necessary for the complete configuration have been

made.

The run-time system devolves configuration establishment to the configured

incarnations themselves. They run user-level preamble code before the main

program is called, to fetch and generate their parameters. This strategy means that

the processing involved is carried out concurrently and therefore potentially in

parallel. It also means that ports attached to new channels can be created at the

correct incarnation automatically. Each new incarnation deposits in stream space

labelled streams attached to new channels it creates, and fetches streams it requires,

either to use directly as interfaces or to refer to other channels to create an attached

port. Freedom from deadlock is simply assured, by causing each incarnation first to

create all channels it is required to create and depositing them, and then to fetch

streams referring to channels created elsewhere.

5.5.2 Operational Considerations

Stream space has two drawbacks when compared to propagation by message

passing: the first is that it is a critical point of failure, the second is the performance

overhead incurred in using it. Stream space is currently implemented as a per-RDC

incarnation, with put/get operations implemented as invocation messages sent to it.

This implementation choice avoided extending the kernel and led to an

implementation which can relatively easily be changed and extended with

monitoring and debugging facilities.

Replication of stream space contents using replica incarnations would be

necessary to provide resistance to failure, but this has not been attempted. Ensuring

atomicity of ss_get operations in cases where the number of reference copies is

limited would make replication a non-trivial undertaking. Atomic reference

propagation (i.e., in which it is known either that propagation did successfully take

place to all of a set of incarnations, or that it did not take place to any of them) is left

to applications to provide, based on message passing.

 71

Stream space is not employed in forking, so that a forked incarnation can be

linked into the existing structure without dependence upon it. The forker is anyway

blocked in the current implementation until the new incarnation can begin

execution, and any streams to the new incarnation which the parent has declared are

then obtained immediately from it by the run-time system.

Using the current user-level implementation of stream space, the minimum cost

of a call to ss_get (for an uncached reference) can be estimated as 3 milliseconds – i.e.

slightly more than the cost of the invocation call necessary to propagate the

reference (see Section 8.6 and Appendix A). This seems a small price to pay for

stream space semantics. Message-based propagation remains as an option for those

programmers concerned with optimising performance.

5.5.3 Caching

The run-time system caches references obtained from stream space. ss_get first looks

for the label in a cache of references obtained from previous calls, and the request is

passed on to the software implementing the stream space repository only if not

found in the cache. Caching affords a considerable performance advantage over

non-caching, since a synchronous invocation takes at a minimum several

milliseconds, as opposed to a local search conducted in the caller's address space,

which takes typically a small fraction of a millisecond. Moreover, stream space

caching automatically obviates redundant propagations which might occur unless

incarnations kept track of reference propagations. For example, a scheduler

processing tasks for clients can label the references pertaining to their requests and

deposit them in stream space. The task descriptions it gives to its workers include

these labels. Because of caching, the workers only fetch the corresponding

references from the stream space repository at most once, even though they can

execute several tasks requiring the same set of references.

References whose copying from stream space is restricted in multiplicity are not

cached, since otherwise the restriction would be unenforceable. When such

references are returned to stream space the local copies are automatically destroyed.

Also, stream interfaces which are declared with labelled handles at the time of initial

configuration are not cached. This is because the handles can be used to attach the

streams transparently to a different channel, as described in the next chapter. If such

a stream were held in a cache, a call to ss_get with the original channel label would

return this stream erroneously.

 72

5.5.4 Monitoring Propagation

The propagation and destruction of streams can lead to configurations in which no

streams exist that are connected to a certain port, or in which streams continue to be

propagated and invocations attempted using them, even though no port is attached

to the same unicast channel. No way could be seen for the operating environment to

decide upon these conditions except at the expense of considerable kernel-to-kernel

notification traffic. For at any instant propagated references could exist potentially

at any node, or could be contained in a message in transmission or awaiting

reception at a port. A facility whereby an incarnation can request that it be notified

explicitly through the event mechanism when another incarnation has propagated a

reference of interest to it (e.g. a stream connected to one of its ports) has been

considered. It could straightforwardly be built upon existing kernel mechanisms,

but has not been implemented.

Control over Clients

When a server propagates a stream to a client belonging to a different RDC, the

stream itself can be made to fall under the management of the server. It has been

described how the stream's propagation can be prevented by setting a reference

descriptor flag. Further control is available through a stream handle which is

generated by the server at the point of propagation (inc_reply can be given a flag to

cause it to return a handle to either a propagated port or a propagated stream). The

ability to manage streams is based upon the principle that the server needs to be

able to control access to its facilities in order to protect itself and also, as will be fully

described in the next chapter, to perform reconfigurations in relation to its clients.

The client can, however, autonomously destroy its stream. It is presently possible to

obtain notification of the destruction of a stream, so that a server can clean up when

a client disconnects unexpectedly. A server can freeze and unfreeze a remote

stream, thereby blocking and unblocking attempts to send invocations using it, as a

means of preventing one client from over-running others in its use of the server.

Finally, a facility to invalidate clients’ streams could also be added

straightforwardly, using the existing stream control mechanism.

5.6 Summary

This chapter has described mechanisms by which an incarnation can declare the

creation and integration of new incarnations into an RDC's configuration. The

programmer does not have to be concerned with the operational details of how the

 73

new incarnations' connections to other incarnations are realised. The chapter

described the use of stream space to propagate references between incarnations

which do not have a stream-to-port connection Propagation of ports has not yet

been fully described, however. It is one of three related mechanisms to be described

together. To complete the description of structural reconfigurations in the RDC

model, it remains to examine reconfigurations which change the server incarnation

that processes requests from a given client incarnation.

 74

Chapter 6

Reconfiguring Clients and Servers

This chapter is concerned with reconfigurations applied to fluctuating sets of

multiple peer incarnations, which between them process requests from a set of client

incarnations. The chapter describes the necessary reconfiguration mechanisms

available under the RDC model, and analyses and defines application requirements

for performing the reconfigurations. It illustrates the use of these mechanisms and

shows how application requirements are met in the cases of the example text

processing and printer server RDCs (introduced in Section 2.4.2).

6.1 Multiple-peer Servers

The rationale behind the use of multiple peer incarnations includes the following

considerations:

1] load balancing – if more than one printer exists, for example, then the printing

load can be divided between them.

2] separation of concerns – requests from clients of certain types are handled by

incarnations of appropriate functionality (laser printing versus line printing).

3] parallel computation through data division – for example, the incarnations

implement a database, each handling requests pertaining to a discrete section

of it.

4] replication for fault tolerance – every request is multicast to a set of

incarnations which process it and reply together.

Of related concern are configurations in which a single peer is normally used, but

one which can be replaced by another:

 75

5] replacement as part of node administration or system evolution.

6] replacement for fault tolerance – clients are connected to a replacement

incarnation if the original fails.

Configurational and reconfigurational requirements for fault tolerance –

particularly where multicast is used – are largely beyond the scope of this work.

The RDC model does, however, take a general approach to those of the

reconfigurations implied by the above which take place in the absence of failure (1-3

& 5). The types of reconfiguration which are to be addressed here are to:

Add a server peer and redistribute clients.

The printer server RDC of Section 2.4.2 can expand its operations to two printers

and therefore two printer spooler incarnations. Some clients connected to the

first can then be re-connected to the new spooler incarnation so as to balance the

load.

Change the association between existing clients and server peers.

If, for example, all clients connected to one printer spooler close their connections

to it whilst the other has more than one client connected, then some of these can

be re-connected to the first.

Withdraw a server peer and replace it with an extant one or a new one.

When a printer node is withdrawn, clients connected to the corresponding

printer spooler are to be reconnected to the remaining one.

The problem of achieving these reconfigurations falls into two parts. A server peer

such as a printer spooler may manage state related to a client's activities, which it

retains between client calls. The implications of this are analysed in Section 6.3. The

other component of the problem, to be dealt with first, is how invocation messages

are to be switched between server peers.

An intermediate incarnation could be used to manage these reconfigurations

transparently by forwarding requests. Each time a client invocation is received, it is

forwarded to the server incarnation able to handle it or best able to handle it on the

basis of load, functionality or data. Such an incarnation could be made to reside at

the client's node in situations where fault tolerance is required (although client

migration would then be a problem).

With some servers, clients usually make successive invocations which are

handled by the same server incarnation. For example, this is the case if there is state

 76

held per client. A potentially more efficient alternative to forwarding is then to bind

the client to this server incarnation for the duration of the calls it handles from the

client. A logically direct connection between client and appropriate server peer a)

has the advantage of not involving an intermediate incarnation in performing

extraneous processing, and b) it potentially allows the underlying message routing

software to choose a more efficient route than via the intermediate incarnation's

node. Such a direct connection is that between a stream held by the client and a port

owned by a server peer, and reconfiguration mechanisms applicable to these

connections are described in the next main section, 6.2.

Adding or removing a client.

The other reconfigurations not included in the three just given are the addition and

removal of a client from a multiple-peer server. There is little to be said about these

reconfigurations from the configurational standpoint. If server peers manage

separate clients at separate ports, then adding or removing a client means creating

or destroying a port. Otherwise what is involved is the creation or destruction of a

stream attached to the appropriate channel. The new attachment can be imposed

externally by a manager within an RDC, or a stream directly connected to an

appropriate server peer can be passed back when the client requests connection to a

server RDC. Destruction is purely local to the stream involved.

6.2 Mechanisms to Change the Receiver

Clients can be grouped a) by means of the channels to which their streams are

attached, and b) by means of the ports from which their invocations are received.

The channels exist to distinguish server peers as they are introduced into the server

RDC, but can persist even after they are withdrawn. Ports are used by server peers

or their managers to group clients.

 77

In a given configuration of clients connected to server peers (Figure 6.1), there are

server peer incarnations {1,..., n} which service requests from clients {1,..., m}

through channels {c1,..., cr}. Each client is identified with a stream: an incarnation

with several streams to the same service is regarded in this discussion as several

clients. A given server incarnation k has a set of ports k = {pk1,..., pks}.

The configurational relationship can be expressed through two functions: the

function from clients to channels is:

 1: i → cj (for some j  {1, .., r}, for each i = 1, .., m)

and the function from channels to ports in the unicast case is:

 2: cj → pkl (for some pkl  k for eachj = 1, .., r. k  {1, .., n})

clients channels server peers

p
k1

1




1

m

c
1

c

c

j

r

1

k

n





p
ks

p
kl


i k




2
 


i

The function 2◦1 induces the function  from client streams to server peers.

port channelstream
key

Figure 6.1: The Mappings Relating Clients to Server Peers.

 78

and in the multicast case is:

 2' : cj → {pk1l1, .., pktlt
} (with each pkili

 ki
for each j = 1, .., r)

In the unicast case we then have a function giving the unique server peer which

currently processes requests for a client:

 : i → k iff 2(1(i))  k

There are three mechanisms for changing this configuration (Figure 6.2), which

are now described.

6.2.1 Propagating Ports

The first mechanism is that of propagating a port to another incarnation (Figure 6.2

A). To simplify semantics, only ports attached exclusively to either multicast or

unicast channels can be propagated (although for other purposes a single port can

be attached to both types).

• If the original port is attached to a unicast channel, the new port becomes the

sole port attached to it, and the original port is, as it has to be, automatically

detached from it. Invocation messages sent using a stream attached to this

channel are routed to the new port when it is attached. In the case of

propagation using stream space, the system automatically limits to one the

number of copies of the port which can be taken out at any one time.

• If the original port is attached to a multicast channel, the new port becomes

added to those to which invocations are multicast.

This mechanism does not require knowledge of what streams are attached to the

original port's channel(s), but has a blanket effect on all such streams. A "client" of a

multiple-peer server RDC could in fact be a group of incarnations, created as a result

of propagating an original stream connected to one of its ports. If a different

incarnation becomes the implementor of the service for the multiple-incarnation

"client", then port propagation is appropriate since all members of the group are

affected together.

 79

p detached if
c is unicast

port p propagated to  as p ;
messages from streams in
group G start arriving at p

stream  rebound to channel c ;
messages from  start arriving
at p ( unaffected)

port p attached to channel c ;
messages from stream groups
G1 and G2 are merged at p

 



p p

p

c c



i3



p

c c

 

p p



G = c{, 

G1 = c {, 

G2 = c {}



 fixed; changed




 





































c

















































 fixed; changed
 

 fixed; changed
 













A. Port Propagation

B. Port Attachment

C. Stream Rebinding

p detached if
c is unicast

1

1
1

1 is the function from client streams to channels; 2 from channels to server ports.

port channelstream
key

Figure 6.2: Three Mechanisms to Cause Invocation Messages to Arrive at a
Different Incarnation.

 80

In the first implementation [WORMOS87a], ports could be attached to at most

one channel, and port propagation was the only mechanism which allowed clients to

be grouped for the purposes of reconfiguration. Whilst some applications need to

separate clients or groups of clients using multiple ports, use of this mechanism

implies that the server peers must manage variable numbers of ports at which they

receive requests. It therefore provides no scope for separating reconfiguration from

the application algorithms, even when this is otherwise partially or wholly possible.

6.2.2 Attaching Ports

Another primitive inc_attachPort was introduced which can be applied externally by

a manager incarnation. This causes a port to become attached to a channel (Figure

6.2 B). If it is a unicast channel, then the other port currently attached is normally

automatically detached from the channel. If it is a multicast channel, the newly

attached port becomes a member of the corresponding multicast group. When

inc_attachPort is externally applied, the port is referred to by a port handle, whose

deposition into stream space was specified as part of the port's declaration when the

peer was created.

A printer spooler incarnation belonging to the printer server RDC uses only one

port to receive requests and therefore, unlike peers using port propagation, does not

distinguish structurally between its clients. In this case, groups of clients become

connected to or disconnected from this port by attaching or detaching it to or from

channels. The output of invocation messages from channels is thereby merged or

de-merged with or from that of other channels at the port.

In cases where source and functionality are distinguished by message data, port

attachment can also be usefully applied locally when the incarnation knows the

channel attachments of its ports. Messages arriving over multiple channels – both

unicast and multicast – can then be merged at a single port to simplify reception.

Moreover, the messages can be de-merged by separating them out from one port to

others. Thus port propagation is always in effect feasible, even if the port has to be

split into two (with channels of either type divided between them). The two ports

can be propagated separately, and the new ports recombined by the recipient.

6.2.3 Rebinding Streams

Both of the above mechanisms change the channel-port configuration function 2 (or

2' ) and leave the client-channel grouping function 1 intact. They do not suffice for

reconfiguring individual clients' associations with server peers, unless each is

 81

associated at any one time with a single channel. In cases where clients cannot be

distinguished by message data, this means that reconfigurable servers are bound to

carry the overheads associated with reception from as many ports as there are

clients.

The next and last mechanism is that of rebinding an individual stream: of

causing it to become attached to a new channel (Figure 6.2 C). Rebinding is only

provided for streams attached to unicast channels; there is no need to rebind streams

to different multicast channels. Its effect is to cause invocation messages to be sent

to the (unique) port attached to the new channel. The stream to be rebound is

referred to by a stream handle, which was either deposited into stream space at the

time of the stream's creation, or was created at the time that a server propagated the

stream back to a connecting client.

Stream rebinding differs operationally from the previous two mechanisms. The

operation is applied directly to the incarnation possessing the stream, whereas in the

other two cases re-routing is effected using a search algorithm that locates the new

physical destination for the messages affected, based on the identifier of their

channels (this is described fully in Chapter 8).

This operational distinction is provided, firstly, in case of failure. If the original

destination, which is where re-routing information would be located, becomes

unreachable, then there is no way that invocation messages can be routed to a port

attached to a different channel unless they bear its identifier. The stream's host

resorts eventually to broadcasting, but will attempt to find the original channel

unless it has been directly rebound with the new channel's identifier. Secondly,

since no acknowledgements are given for datagrams, stream rebinding is the only

means available for reconfiguration when inc_dgram is used.

6.2.4 Moving the Message Queue

The above mechanisms are concerned with re-routing invocation messages to new

ports: but this leaves open the question of what happens to messages which have

been sent but not received when a reconfiguration takes place. These are messages

still "on the wire", and those queued at the original port. The first issue to be

addressed is consistency in meeting delivery guarantees. The second is the set of

options available in the model.

1] Messages which have been sent but not queued at a port at the time

reconfiguration takes effect will be routed to the new address, so that any

 82

invocation message is consistently sent to one port or another attached to a

unicast channel – never to both. In the multicast case, such a message may or

may not be delivered to the new port. This is consistent with the unguaranteed

delivery which anyway applies to invocations over a multicast channel.

2] Messages which have already been delivered to the port can be dealt with as

the reconfiguring incarnation determines. The reconfiguring incarnation

specifies whether the message queue of the port affected is to be left intact, or

whether relevant queued messages are to be moved to the new port. When

rebinding a stream or detaching a port (in attaching another one), some queued

messages do not derive from the relevant stream or channel, in general, and

movement of these is not in any case in question. When propagating a port, the

entire queue is eligible for movement.

When a port is propagated and the original port is kept, then the current

message queue is retained and these messages can be received as normal. In the

unicast case, a flag can be set to specify whether or not invocation messages continue

to be queued until the new port has been received and messages are re-routed. If

not, then in the meantime all transmissions of invocation messages sent over unicast

channels which previously would have been queued at the original port have to be

made pending, in the absence of a known destination. This amounts to choosing

between, on the one hand, allowing the message queue at the original port to grow

in the period before the propagated port is received and, on the other hand, blocking

incarnations which are trying to send. The latter particularly affects those

incarnations attempting to make asynchronous invocations – synchronous invokers

are anyway blocked until their messages are received.

Reconfiguring Under Failure

An exceptional case of applying a communications reconfiguration is when the

owner of a port has become unreachable from a given stream or streams, through

network partition or node failure. Then the queue of messages at the port is also

unobtainable, but nonetheless it may be desirable for subsequent invocation

messages sent using these streams to arrive at a backup incarnation which is

reachable from them (i.e., in the same network partition or on a functioning node)

[HILTUNEN]. In this case, the stream rebinding or port attachment primitive is

used by an incarnation in the same partition which has detected the unreachability,

with a flag to indicate the absence of a port from which queued messages are to be

moved. In the current implementation, an invocation attempt to a failed node gives

up and returns a failure code after a system-defined number of retries lasting about

 83

five seconds. If a manager took longer than this to react, a client would perceive the

failure condition, and would have to repeat the invocation primitive for the

reconfiguration to take effect.

An alternative considered was a type of port which could be registered with the

local kernel as being a backup port: i.e. which was associated with but not attached

to a particular unicast channel. When unable to locate an attached port, a sending

kernel could request the attachment of the backup port (whose existence was

notified in responses to messages searching for an attached port), and then deliver

the invocation message to it. This would take place transparently: clients need not

know of the first failure. The incarnation owning the backup port-turned-attached-

port could either be a peer of the unreachable incarnation able to provide a

substitute service, or an intermediate manager. A manager could apply a

reconfiguration to reroute the unreceived messages to a backup incarnation, when

notified through the event mechanism that they had arrived. Backup ports have not

been implemented.

Application techniques for recovering from failures using the features of the

RDC model and its Wormos-based predecessor have been examined elsewhere

[HILTUNEN, LEUNG]. The features employed include the creation of duplicate

incarnations through forking, the use of multicast and use of the above

communications reconfiguration mechanisms.

6.3 Application Requirements

Applications have global requirements to be maintained under the reconfigurations

of Section 6.1. These are to maintain:

• Distributed data and device state consistency. For example, the states of the

scheduler and worker of the text processing RDC are each consistent when an

entire task has been obtained by a worker. For the printer server RDC,

consistency means printing each document entirely at one printer or another,

and not partly at each of several printers.

• Safety and liveness properties. These are that incoherent stream-port

connections are not made, invocation messages are not lost, and deadlock and

livelock are avoided. It is assumed for the purposes of this treatment that

manager incarnations which connect and re-connect other incarnations do so

with sufficient knowledge of the incarnations concerned, and are not liable to

make incoherent connections. Protection against message loss will be

 84

considered with the consistency requirement. Strategies to guarantee against

deadlock and livelock are application-dependent, and beyond the scope of this

work.

Consistency is the central concern here. Consistency is achieved by the

completion of transactions. A transaction is semantically defined in application-

specific terms: the acquisition of a task by a worker from a scheduler (acting as a

task server) is an example of a transaction. It leaves the scheduler's task list in a

consistent state, and the worker with a well-defined task description.

Transactions are defined operationally as a sequence of communications

exchanged between an initiator (the client) and a recipient (server peer). An

incarnation can act as both a client and a server simultaneously to other

incarnations, so the "client" and "server" labels used here are to be taken as relative

to the transaction taking place.

A client  enters into a series of transactions tu,..., tv,..., tw whilst connected to the

server peer j = () (because of reconfigurations,  is a function of time). Each

transaction tv operationally consists of an initial invocation made by the client ,

followed possibly by other communications made by , and communications made

back to  by the server peer j. Communications can either be:

• invocations (made perhaps using auxiliary streams and ports), or

• data copying performed using auxiliary buffer handles.

So that transaction initiation is well-defined with respect to j, these

communications must affect it after it receives the initial invocation. In particular, 

may use a buffer handle in connection with tv only after the initial invocation is

known to have been received.

• It is assumed that the client can always tell locally when a transaction is

complete. Up to this point it is said to be engaged in a transaction. It can in

principle always confirm completion, either through i) completion of a

synchronous invocation, ii) use of the event mechanism where inc_asinvoke is

used; or iii) by receipt of an invocation message back from the server. Note

that, when inc_send is used, a transaction can be complete as far as the client is

concerned, even when the server has not yet received the invocation message.

• It is further assumed that none of the communications belonging to a

transaction transfer data or references belonging to another transaction. Thus

 85

transactions can overlap in time, but are cleanly separated in terms of the data

passed in the communications involved.

Transaction processing by an incarnation can entail entering into another,

consequent, transaction. Transactions are required to take place in bounded time,

regardless of the existence of consequent transactions upon which they depend for

completion. In particular, they are assumed to take place without deadlock.

6.3.1 The Conic Reconfiguration Criterion

[CONIC89c] describes a model of managing reconfigurations. Although the

reconfigurations are achieved through different mechanisms to those used here,

they achieve the same ends as the client-to-multiple-peer server reconfigurations of

Section 6.1. Instead of using the reconfiguration mechanisms introduced above as

specific to the RDC model, the Conic model employs basic link and unlink

operations between communications interfaces. Because of its relevance, the Conic

work is now outlined. It will be shown, however, that it does not extend to the case

of loosely coupled clients and server peers, and the RDC model solution for this case

is given.

The notion of transaction defined above is derived from the one given in

[CONIC89c]. Two notions of state are used to establish when a Conic node (a

process which is the equivalent of an incarnation for the purposes of this treatment)

may undergo a reconfiguration. These states are activity, passivity and quiescence.

These states are defined in terms of transactions, and not the underlying

communications primitives.

Quiescence is the state required of a Conic node in order that it can undergo a

reconfiguration, whether this be its complete removal, or its being linked to or

unlinked from another Conic node. In this state:

(Q1) it is not currently engaged in a transaction that it initiated;

(Q2) it will not initiate new transactions;

(Q3) it is not currently engaged in processing a transaction;

(Q4) no transactions have been or will be initiated by other Conic nodes which

require processing by this node.

It is shown [CONIC89c] that by making each of a well-defined set of Conic nodes

passive, quiescence can be reached, and it can be reached in bounded time. A node

 86

is passive if and only if it processes transactions and initiates any consequent

transactions, but is not currently engaged in a non-consequent transaction it

initiated, and it will not initiate a non-consequent transaction. The set of nodes

which are passivated for a node Q to reach quiescence is: i) Q itself, ii) all nodes

which can directly initiate transactions on Q; and iii) all nodes which can initiate

transactions which result in consequent transactions on Q.

Quiescence is also a well-defined and sufficient criterion for the complete

removal of an incarnation from an RDC. The above definition of quiescence and the

auxiliary definition of passivity can be immediately applied to incarnations instead

of Conic nodes. In regard to the validity of quiescence as a precondition for

applying a reconfiguration to an incarnation, the only possible stumbling block is

the allowance of asynchronous transactions based on the RDC communications

model. However, the definition of passivity implies that an incarnation processes all

requests and leaves its queue empty after no more requests are sent. This

guarantees that an incarnation is not removed with requests in its queue. If a client

sent an invocation message reliably, then the completion of its invocation implies

the arrival of the message in the server's queue: the message cannot be on the wire.

And the definition given above of "engagement in a transaction" precludes the

withdrawal of a node whilst or before another incarnation attempts to copy data to

it or from it asynchronously.

On being directed to the quiescent state, an incarnation may, additionally,

perform finalisation actions before notifying the manager that it is ready to be

withdrawn. For example, the printer spooler incarnation may send final data for

printing. It would be erroneous to withdraw the incarnation immediately the data

were received by the spooler, even though the transaction, operationally defined, is

complete.

6.3.2 Limitations of Quiescence

The state of quiescence cannot necessarily be reached when a server peer's clients

belong to independent RDCs, rendering it unsatisfactory as a precondition for

reconfiguration in this case. This is because the server's management cannot interact

with the clients at an application level. Passivation, however, can only take place via

an interaction with the client's algorithms directing it to reach this state. Quiescence

cannot then necessarily be reached by a server peer in bounded time, since it may be

always engaged in some client or other's transaction.

 87

Quiescence at the level of incarnation is also too strong a condition in

circumstances where what is required is for a single client to become connected to a

different peer. There is no reason, in principle, why a peer should not respond to

transactions from other clients whilst reaching a state of consistency with respect to

the client to be reconfigured.

6.3.3 Server-Quiescence

Because invocation messages are queued at ports, it is possible to forestall

processing of a new transaction by not receiving its first invocation message, even if

it has arrived at a port. Once the final invocation message belonging to a transaction

has been received by a server peer, it is then able not to receive further messages

from the same source. This can be achieved either:

• by selectively receiving messages only at certain ports (if necessary, an

individual client stream can be rebound to a new channel to which a local port

is attached, thereby isolating invocation messages at this new port);

• or by using a call available to examine the origins of queued messages at a

single port, and the facility to receive only messages deriving from a specified

stream when using inc_receive.

Given these facilities in the RDC model, it is possible to define a criterion for

being able to perform client-server reconfigurations which does not suffer from the

shortcomings of quiescence.

Definition of Server-quiescence

An incarnation  is said to be in a state of server-quiescence with respect to one of its

clients  if is not engaged in a transaction initiated by , and will not receive the

first invocation of a next transaction from , if such is made.

The following observations can be made when a server  is server-quiescent with

respect to a client :

•  has completed any last transaction processed by  (otherwise would still be

engaged in it), and invocations belonging to any next transaction have been or

are about to be queued at , but have not been processed.

• a reconfiguration is then possible in which some other peer ' processes

remaining transactions, including any whose initial invocations were queued at

 88

. If it processes them as  would have done had remained connected to it,

then this reconfiguration is transparent to .

Crucially, server-quiescence is a state which can be reached by  itself, and does

not require interaction with 's algorithms.

Transferring a Client Between Server Peers

To re-associate the client  consistently from server peer  to a new peer or another

extant peer ',  is made server-quiescent with respect to , so that it is in a

consistent state with respect to it. This state has two components: external device

state and internal state. The internal state consists of local volatile data and auxiliary

references (buffer handles, streams, ports) associated with processing transactions

from .

To achieve the transfer of the client:

1] One of the three reconfiguration mechanisms described above has to be used,

incorporating movement of the appropriate queued messages to the new server

peer port.

2] Any local device state associated with  has to be made consistent, and the

internal data and references representing the state of processing for  must be

transferred to ' before it can process the next transaction from . For example,

in the case of a printer spooler, this means that any data belonging to a

particular document that have been buffered but not printed (for want of

completion) have to be sent to the new spooler.

Withdrawing a Server Peer

A server peer to be withdrawn may itself be a client of one or more other

incarnations. What is then required is a combination of Q1 - Q2 from the definition

of quiescence, together with server-quiescence to replace Q4. An incarnation is

replacable if:

(R1) it is not currently engaged in a transaction that it initiated;

(R2) it will not initiate new transactions;

(R3) it is server-quiescent with respect to all of its clients.

 89

Removal Without Replacement

If an incarnation (whether or not it is a server peer) is to be withdrawn from an RDC

without providing a replacement for its clients, then the clients must be made fully

quiescent. This is so that there are no outstanding invocation messages from the

clients which are buffered but which will not be processed. If there were to be such

messages, then they will be lost.

In summary:

• To replace a server peer with respect to a client, it has to be made server-

quiescent with respect to that client.

• To remove a server peer but continue to service its clients with other peers, it

has first to satisfy R1 - R3, and to perform any necessary finalisation actions.

• To remove an incarnation entirely from an RDC, without replacement, it has

first to satisfy Q1 - Q4, and to perform any necessary finalisation actions.

"printer1"

"report"

workers

printer
spooler

manager

printer

"printer2"

printer
spooler

printer

port channelstream

key

Figure 6.3: Configuration with Two Printers.

 90

6.4 Reconfiguring the Example RDCs

In the example text processing RDC with its four workers, the initial configuration

of the RDC employs only one node with a printer. The issue now addressed is how

to add a second printer node, and hence printer spooler incarnation, to the running

RDC. This can be achieved as follows:

1] The manager receives from the printer spooler a report that the workload

represented by the queue of unreceived messages at its port has exceeded a

threshold value. There is a primitive inc_testPort, which returns the number of

invocation messages currently queued, and their (user-level) headers,

containing worker identifiers and document lengths. This can be used to

measure workload.

2] On inspection of this performance value (and perhaps others), a decision is

taken as to whether the addition of a printer is required – either by a human

administrator interacting with the manager incarnation, or independently by

the manager incarnation. The availability of another printer node can be

ascertained by interrogation of the pool manager.

3] To effect the reconfiguration, the manager firstly creates a second printer

spooler at the new node, with once again a stream attached to the "report"

channel (for continued monitoring), but with a port attached to a new channel,

"printer2".

4] The manager then rebinds the streams of two of the four workers, so that they

become attached to this new channel (Figure 6.3). The workers are evenly

divided on the assumption that they are likely to make requests amounting to

approximately equal total workload. Stream rebinding is the only mechanism

which can be used, given that all worker streams are initially attached to the

same channel.

 91

Fragments of the manager code for performing the reconfiguration are given in

Figure 6.4. After establishing the identity of the new printer node, the manager

creates the new printer spooler there. It declares the interfaces (lines 2 - 3), and then

issues the creation call (line 4: details are omitted for the sake of clarity). At line 6,

ss_get returns a stream attached to the new printer's channel, and it is to this channel

that some of the worker incarnation streams are to be rebound. The set of workers

to reconfigure, given the homogeneity of the work they are carrying out, is any two

of the current configuration of four workers. ss_get is used in line 7 to get a handle

to printer1's port, whose creation was stipulated when this incarnation was created.

ss_get is used in line 10 to obtain from stream space a handle to the streams of each

of the chosen workers, and finally inc_rebindStream is used in line 11 to effect the

rebinding. The argument port_handle is provided so that unreceived messages sent

from the stream are automatically forwarded from the referent port before the

stream is rebound. Thus all queued and future messages from these two workers

are directed to the port of the new printer spooler, but the other two streams are

unaffected.

The following points can be made about the reconfiguration of this RDC:

• If this example were to be altered to that of the printer server RDC with clients

belonging to other RDCs, then reconfigurations aimed at balancing load across

the printers would still be possible using the same mechanisms. Connection to

the printer server would be made via the manager, which propagates back to

the client a stream to one of the spoolers, generating a stream handle referring

to it as it does so. The decision as to which clients should be associated with

1 node = ..NEW PRINTER NODE..;
2 ss_isPort(&incparams.ip_ifaces[0], NEW_CHAN, "printer2", "printer2.han");
3 ss_isStream(&incparams.ip_ifaces[1], "report", NO_HANDLE);
4 inc_create(MODULE_SERVER, node, &printers[1],.., &incparams);
5
6 new_stream = ss_get("printer2");
7 port_handle = ss_get("printer1.han");
8 for(workerid = ..SET OF WORKERS TO REBIND..) {
9 sprintf(handle_label, "worker%d", workerid);
10 strm_handle = ss_get(handle_label);
11 inc_rebindStream(strm_handle, new_stream, port_handle);
12 }

Figure 6.4: Manager Code to Integrate New Printer.

 92

which spooler would have to be based on several factors. These include the

workload that is currently queued for receipt, the component of this which is

due to each client, and possibly the workload each has imposed in requests so

far, as reported by the spooler in terms of numbers of documents and sizes.

This is not further discussed here.

• The worker and spooler incarnations do not call any reconfiguration primitives

when a new spooler is added. The only code mentioned in connection with

this reconfiguration is for reporting printer state. What has not been described,

however, is whether the printer spooler is blocked by the manager when it

reports its condition, and whether this is the only reconfiguration code

included with the application algorithms.

The consistency requirement for the text processing application is that every

document is printed, but integrally at a single printer. Although it has been

implicitly assumed so far that the printers are sufficiently close together for it not to

matter if the set of documents is divided between them, it is unsatisfactory for an

individual document to be split up.

If the application is such that document data is always transferred integrally with

a single invocation, then the spooler can send the data to the printer directly it is

received. This constitutes a single transaction. In this case, an alternative

reconfiguration is to attach printer2's port to printer1's channel, leaving printer1's port

unattached but retaining its queue of messages, and causing subsequent messages to

arrive at printer2's port. The attachment is then reversed as necessary to maintain a

queue of work at each printer. Whatever the mechanism, the manager blocks the

spooler when it reports its state whilst the mechanism takes effect, but no other

interaction with the application algorithms is required.

Otherwise, the data have to be buffered, and there are two possible definitions of

transaction for the purposes of changing the spooler which handles a particular

client's requests:

i) in which a transaction consists of the sending of all document data to the

printer server, even when this takes several invocations; the data are buffered

until complete, and then printed.

ii) in which a transaction consists of a single asynchronous invocation, which

transfers possibly only part of a document's data.

 93

On the first definition, the spooler has to be directed by the manager to continue

to operate to reach a state of server-quiescence with respect to the client concerned.

It can then print the complete data and notify the manager of this state.

On the second definition of transaction, the spooler is in a state of server-

quiescence with respect to all of its clients at the point when it notifies the manager

of its queue length. However, it will have to be directed by the manager to send

partly-buffered data to the other spooler before the reconfiguration can be

mechanically effected.

Dealing with Node Withdrawal

We turn, finally, to the question of possible responses to the imminent withdrawal

of an extra node by the pool manager. In the case of the printer spooler, the

incarnation must be removed since no printer device remains for it to control, and

the clients affected must be re-connected to the remaining spooler. It is therefore

directed to reach a state of readiness for removal by the manager, at which point it

synchronises with the manager. In this case, it is sufficient for it to become server-

quiescent with respect to its clients (R3), since the spooler is a client only of the

manager (R1, R2).

In the case of the worker, Q1 - Q4 apply. It is a client of both the scheduler and

the printer server. A transaction with respect to the scheduler is a complete task

acquisition. Despite the existence of two possible definitions of a transaction

considered earlier in connection with the printer spooler, when the worker is to be

removed the only definition of a transaction which leaves the spooler in a consistent

state is the sending of complete document data to it – otherwise the worker could

disappear having sent only part of a document to the spooler. Possible finalisation

actions for the worker are i) to complete current task processing, or ii) to abort it, if

no data have been sent for printing, and send the task description back to the

scheduler, to be processed by another worker. For a worker to be given a directive

by a manager, a channel is required, to which the worker has an attached port (not

shown in the figure). The worker would be required to test for a message at this

port, or to set up a software interrupt handler called when a message arrived from

the manager.

The other option in this case is the migration of the affected worker to a node

which remains allocated. This option has the merit that migration would be

transparent to all but the manager incarnation. If task processing times are

indefinite, it could be the only option that can be carried out before the pool

 94

manager's withdrawal notification period expires, at which the worker would be

lost if still resident there. Migration has the disadvantage that it would increase the

load on one of the nodes, but once migrated the worker can be removed when it is

convenient. Migration is also not always possible, for lack of memory resources.

This is also a problem when the client-related internal state has to be transferred to

another peer, but is less liable to overflow memory resources since less stack and

heap duplication is involved. Migration is discussed in full in the next chapter.

6.5 Summary

This chapter has considered sets of peer server incarnations as a structural unit,

serving either clients within the same RDC as the server peers, or independent

clients belonging to other RDCs. It has described how incarnations can be removed

from these configurations and replaced in them. Three reconfiguration mechanisms

are available, for use either by the server peers themselves or a separate manager

incarnation. The mechanisms differ in the incarnations they affect, whether or not

they can be applied transparently, and in their utility under failure conditions.

The chapter went on to discuss application requirements to maintain consistency

when reconfiguration takes place, and it arrived at general conditions to be met

according to whether an incarnation is to be replaced or removed without

replacement, and according to whether its clients belong to independent RDCs.

The application of these developments to the example problems introduced in

Chapter 2 shows the possible extent of interaction between application algorithms

and reconfiguration management algorithms. There needs, in general, to be both

synchronisation and transfer of monitoring and state information between

management and application before reconfiguration mechanisms can be brought

into play.

 98

Chapter 7

Control and Migration

This chapter moves on from the control of communications between incarnations to

describe the mechanisms available for controlling the incarnations themselves. In

particular, it covers incarnation migration. The mechanisms are described in the

context of the requirements implied by node allocation and load balancing as

performed by the pool manager, and of the need to enforce termination.

7.1 Parents and Control Mechanisms

If incarnation A possesses an incarnation handle for incarnation B, A is said to be a

parent of B, and B the child of A. When a parent first creates a child, it is by default

the only parent (in a load-balanced RDC, a pool manager incarnation is made a

second parent at creation time – see Section 7.2). However, if the incarnation handle

is propagated to other incarnations, the recipients become parents, and thus the

child can come to have multiple parents. In addition, every incarnation possesses by

default an incarnation handle referring to itself, and is its own parent. This is so that

incarnations can migrate themselves.

A parent is able to perform the following types of control operation upon a child:

C1] to destroy it: this terminates the incarnation – without giving it an opportunity

to flush buffers or perform any other "last wishes".

C2] to freeze its execution (after completion of any current system call).

C3] to unfreeze it. This is necessary both to re-commence the execution of an

incarnation frozen by an operation of type C2, and to cause an INCHOATE

incarnation to become STARTED. A parameter to this call sets the local

timeslicing priority of the incarnation at its host node.

 99

C4] to migrate it. If successful, this causes the child to move to a node specified as

an argument to the operation. This operation is described in Section 7.4.

C5] to register interest in events concerning the child.C6] to set the dependency

of the child upon the parent, as described in Section 7.3.1.

C7] to enquire about the incarnation's state.

There was insufficient time to include an operation to examine and set a child's

machine-level execution state, which is necessary for the purposes of debugging.

Except when the operation is invoked upon the caller, all of the above operations

are performed transparently to the child concerned. In some cases, however, an

application-dependent operation is required that is implemented at user level and

which is performed asynchronously with respect to the application. For example, a

monitoring operation which reads the value of a variable might be required to be

performed in this way. This can be achieved using software interrupts caused by

the arrival of a message at a port. When a parent first creates a child, it is returned a

stream to an auxiliary port possessed by the child. This port is for use by the child

in setting up software interrupt handlers that are vectored according to an identifier

in the data of arriving messages. The parent interrupts the child by sending a

standard format invocation message over its stream.

The facility for a child to have multiple parents is necessary, firstly, since some of

the operations listed above are independent and are appropriately applied by

different incarnations. For example, an incarnation can register interest in the event

of its child's death at the same time as the pool manager migrates it to perform load

balancing. Secondly, if a parent fails, another parent can take over.

The application determines the set of incarnations which may control a child. It

does this by propagating incarnation handles, which are references. The kernel

cannot control an incarnation, except to destroy it when a node is withdrawn. On

the principle that the kernel should provide mechanisms and that policy should be

flexibly implemented in user-level code, the kernel does not employ an arbitration

policy between parents. So, for example, it is possible for two parents to try to

migrate a common child to two different nodes simultaneously. What is enforced by

the kernel, however, is the serialisability of control operations.

 100

7.2 Support for the Pool Manager

7.2.1 Load balancing

When an RDC is run under the pool manager's load balancing service, the

requirements are that all control and communication semantics are identical to those

pertaining to the case in which incarnations were autonomously mapped by the

RDC, except:

• the mapping of incarnations is to be controlled by the pool manager;

• and it is not to be possible for the application to interfere with this control by

overriding mapping decisions.

It was decided to spread the cost of incarnation creation away from the pool

manager by designing the implementation of the creation call inc_create so that it

first creates the incarnation at a node determined by the pool manager, and then

transfers control to the pool manager to enable it to migrate the incarnation. This

decision is in fact forced for the case when an incarnation is forked, because no

mechanism exists for an incarnation to copy another one that is STARTED. The

reception of the requisite incarnation handle in a message causes a fraction of the

overhead to the pool manager of that of executing a creation call. Even though an

inc_create call potentially returns before code and initialised data are fetched, it is

nonetheless blocked while a protocol is exercised to establish that the incarnation

can be created at the chosen node, and while other resources necessary to create it

are reserved and identified.

When a parent creates a child in a load-balanced RDC, the kernel automatically

removes the right to migrate from the parent's incarnation handle, and removes the

child's right to migrate itself. System RDCs, and in particular the pool manager, are

able to override this deficiency in the incarnation handles propagated to them.

7.2.2 Node Allocation

In the Wormos design [WORMOS87a], no allowance for extra node allocations was

made. At launch time, the RDC was allocated a set of nodes whose identifiers were

stored as references. This meant that access to nodes could be protected locally to

the incarnation. At first it was planned for extra allocations to be made by

propagating node references to incarnations which required them. This suffers from

 101

two disadvantages: i) some allocations are made to RDCs, and others to individual

incarnations; ii) to withdraw a node, it is necessary to place the incarnation's

identifier on a list held by the node's kernel, which causes it to refuse subsequent

attempts to host an incarnation. Such entries have to be held indefinitely and not

removed until it is known that the RDC as a whole has been terminated. The entries

have to be deleted if the node is later re-allocated.

In view of these considerations, it was decided to use access control lists instead

in the Equus design. Each kernel maintains an access control list, whose entries are

added and deleted by system calls available only to system RDCs (the pool

manager). If an RDC's identifier is on this list, any incarnation belonging to the RDC

can migrate or create an incarnation there. If no entry appears, these types of access

are refused. If incarnations belonging to the RDC are hosted at the time access is

withdrawn, they will, optionally, be destroyed by the local kernel (unless they are

migrating away from the node). The same mechanism serves for the termination of

whole RDCs. The disadvantage of using access control lists compared to the

original scheme is that the pool manager has to contact each kernel concerned when

nodes are initially allocated to an RDC, whereas previously the launch program

simply wrote the nodes' identifiers into a protected data structure.

When an RDC is load-balanced, it is trusted user-level code in the current

implementation which creates a new incarnation at a node dictated by the pool

manager. This is a point of potential abuse. A solution would be for the

incorporation of "node token" references into the model, which could be propagated

from a system RDC (the pool manager) to an incarnation belonging to a load-

balanced RDC which has requested a creation site for a new incarnation. Such a

token would provide creation rights overriding the access control list scheme (a

load-balanced RDC would be allocated no nodes according to these lists). The token

would be destroyed as soon as it was used; and at most one could be possessed at

any one time. This has not been implemented.

7.2.3 Monitoring

In order to monitor its state of execution, a parent can register interest in several

types of event that can occur to its child. The events are detected and forwarded to

interested parents by the child's local kernel. The events are detected either by

awaiting them or polling for them in a generalised event call, or by the generation of

a software interrupt when the events occur. The events are:

 102

1] termination: the child's termination by its own action or the action of another

parent or the withdrawal of its node.

2] faulting: it enters a faulting state when it attempts an illegal instruction or

other hardware-detected error condition. The child is blocked when it enters

this state if a parent has registered interest in it. This facility is provided in

anticipation of the parent being able to inspect and change its register values

and address space contents for debugging.

3] creation or migration complete. Incarnation creation and migration operations

are asynchronous; and migrations can be blocked until the migrated

incarnation reaches an acceptable state. These events return the total times

taken for incarnation creation or migration to occur, for the purposes of

measuring gross system performance. The pool manager is able to keep track

of incarnation locations using this mechanism. Migration completion events

are also provided for applications in which server incarnations are to remain

loosely co-located with their clients for performance reasons. The client would

have to pass an incarnation handle as part of its connection to the server. Upon

receiving a migration completion event, the server incarnation would be

migrated to the same node.

In addition to event-based monitoring, parents can poll to establish the state of

their children. The control operation [C7] referred to above, inc_status, returns a

child's node location and its gross execution state: executing, frozen, faulting or

unreachable. The last state is returned if the local kernel receives no reply from a

repeated request for information about the child (requests are eventually broadcast).

It has been suggested [HILTUNEN] that parents could register interest in the event

of their children becoming unreachable. This would cause the local kernel to probe

for the child periodically, and generate this event when it failed to receive a reply, as

with inc_status. This would be a consistent use of the event mechanism which could

be straightforwardly implemented. The criteria of the number of probe retries

carried out over a specified time, after which the state of unreachability is deemed

established by the kernel, is application-independent, since it is a kernel process

which responds to probes, and it does so preemptively over any user processes. An

alternative considered is a pool manager service based on application-level probes,

which informs incarnations that have registered interest with it when it has

established the unreachability of a node. This would be less satisfactory than the

event-based scheme suggested, in that the latter indicates the unreachability of

incarnations, which is the primary concern, rather than that of nodes. In terms of

 103

message traffic generated, however, the event-based scheme can be expected to

present more communications load, because incarnations, rather than nodes, are

probed for.

Finally, inc_status also returns a child's memory resource usage and message

queue length, to allow estimation of the cost of migrating it; and crude figures for its

CPU usage, to estimate the load-balancing benefits of migrating it. Research has still

to be done, however, into which are the most appropriate statistics for this purpose.

7.3 Termination and Dependency

In the initial design, the destruction of an incarnation caused the recursive

destruction of its descendants: the children it had created and those they had

created, etc. The destruction of the primary incarnation therefore caused the

termination of an RDC. This design was made as a way of achieving termination in

the absence of RDC access control lists held at nodes. It suffered from several

drawbacks:

• unintentional termination of the launch program through bugs sometimes led

to orphaned RDCs which could not be terminated;

• the presence of an incarnation at a failed node meant that its descendants could

not be terminated;

• even when a parent is useless to a computation, it has to be made to persist

through the lifetime of its children.

The inclusion of RDC access control lists provided a mechanism through which

all incarnations belonging to an RDC at reachable nodes can be terminated. In the

current implementation, by default, the termination of an incarnation has no effect

on its children or other incarnations it created. Experience of orphaned incarnations,

however, led to the provision of a facility whereby applications could selectively

enforce termination dependency. This is required when an incarnation should not

continue to exist without another, because it depends upon the other's functionality.

Dependency

A parent can make a child dependent upon it for its continued execution. The child

can be made absolutely dependent upon the particular parent, or effectively

dependent on a group of parents, each of which has individually made it depend

 104

upon it using a group dependency flag. Group dependency allows for schemes in

which a parent can replace a peer it has detected to have become terminated or

unreachable. If a child is absolutely dependent upon a parent, it will automatically

be terminated if:

• its parent terminates;

• or if its kernel, upon making a periodic test, discovers that the parent is

unreachable.

If a child is group-dependent upon a parent, termination occurs only if these

conditions are met and there are no other reachable parents upon which it is also

group-dependent.

Every incarnation belonging to an RDC is by default made absolutely dependent

upon its launch program (which acts, for some purposes, as an incarnation), so that

if the latter terminates unexpectedly or becomes unreachable, all the RDC's

incarnations are eventually terminated (the launch program is normally responsible

for terminating an RDC).

7.4 Migration

7.4.1 Migration Semantics

To migrate an incarnation, a call to inc_migrate is made, which takes two arguments:

the identifier of the incarnation to be migrated, and the identifier of a destination

node. Migration decisions (when and where to migrate) are not made by the kernel,

but by user-level code.

The semantics of migration are that the migrated incarnation's complete data and

execution state are transferred consistently from one node to another. This transfer

is transparent, just as timeslicing is transparent to processes on a uniprocessor. No

special devices are connected to nodes in the development computer systems, and in

particular there are no local files. An incarnation's state therefore resides in its

address space and in its local kernel. The transferred state includes:

• program text, heap, stack and processor registers;

• kernel-held data inherent to the incarnation (the per-incarnation data, or

pincdata), including the incarnation's reference data, list of pending events and

dependencies;

 105

• the incarnation's message queues.

The foregoing design of incarnation communications mechanisms and port

propagation mechanisms makes the communications aspects of migration

straightforward to implement, without any additional mechanisms. Migration is

transparent with respect to all interactions involving the migrating incarnation:

. The movement of streams is transparent to the migrated incarnation. They

retain attachment information and physical addresses in their reference data.

. The movement of a migrating incarnation's ports is transparent to it and to its

clients. Port movement as part of a migration is equivalent to port propagation

between incarnations, and the same mechanisms are used. As in port

propagation, communications taking place with the incarnation whilst or after

it migrates are subject to changes in latency and throughput from those

experienced before migration, as messages are redirected and as the

incarnation changes its co-locality with others.

. Event notifications and operations upon the migrating incarnation – control

operations (including stream and port operations) and data transfers using

buffer handles referring to buffers in the incarnation's address space – can

continue to be made with identical semantics. Further migration operations are

delayed until the current migration has completed. A destruction operation

causes the abortion of the migration. Redirection of notifications and

operations is achieved through the same mechanisms used to propagate

incarnation ports.

7.4.2 Operational Considerations

There is no limit to the number of migrations which can take place concurrently,

whether or not they involve the same kernel. All migrations are independent. They

are carried out almost entirely by the source node S (at which the incarnation

currently resides) and the destination node, D. The node M hosting the manager

incarnation that requests the migration only transmits a migration request to S, and

receives back a response indicating either denial or a confirmation that the migration

will begin, at which point the migration has been committed. Thus the manager can

move on to other migration decisions without being blocked, and the task of

migration is assigned to S and D. If the aim of migration is load balancing, then it is

desirable for the majority of the processing to be carried out by D – this being, by

hypothesis, the less loaded node.

 106

There are other operational factors to be considered, which have a bearing that

depends on the intended use for migration:

1] Migration can be blocked until certain actions have completed.

2] There is a point at which the migrating incarnation is halted at S.

3] The migrating incarnation remains halted for a non-negligible time from this

point until it commences execution at the destination node – the freeze time.

When the aim is withdrawal of an incarnation so that a node can be otherwise

used, then blockings are best avoided. However, an incarnation is not migrated:

• during the transfer of bulk data (e.g. as part of message transfer), to keep

transport protocols simple;

• and when it is involved in a synchronous invocation.

During these activities, a migration request can be processed, but the migration

itself is not performed until they have completed. Bulk data transfers are a limited

problem, because the time for these is bounded by memory size. A synchronous

invocation can, however, last indefinitely. This restriction is discussed further in

Section 7.4.6.

Once control has returned from any such blocking activity, the incarnations to be

migrated still consume resources during migration. By default, a migrating

incarnation continues to execute until the kernel can no longer sustain consistency

with the incarnation being established at D. It is an option, however, for the

manager to freeze it directly or reduce its local timeslicing priority. Even when

frozen, it still consumes memory resources. The need for swapping to disc in such

circumstances is discussed in Section 7.4.6.

Migration blocking is less of a problem for load balancing. Whilst engaged in a

synchronous invocation, an incarnation presents very little load on S. It is

impossible to state what the load-balancing requirements in relation to migration

blocking and incarnation halting are, in the absence of characterisation of the

incarnation's behaviour. The activity of migration itself exerts a load at both S and

D, which may or may not be comparable with the incarnation's exerted load. In this

case also, the manager has the option of freezing the incarnation explicitly just

before issuing the migration operation, thus overriding the kernel's attempts to

continue its execution during migration.

 107

7.4.3 The Freeze Time

Continued execution is incorporated by default because it is preferable for the

incarnation involved if it is progressing towards the end of a finite task, and it is

preferable for the incarnations with which it synchronously interacts. Once frozen,

incarnations attempting to communicate synchronously with it are blocked until it is

established at D and unfrozen again. The designers of the migration facilities of the

V-system and Accent [V85, ZAYAS] concentrated on reducing the freeze time, and

the latter additionally on minimising the part of the address space which is

transferred on migration. Both schemes are based on the expectation that most

processes touch only a small fraction of their address space segments in the time

taken to migrate. V iteratively copies address space pages whilst the process

executes, starting with unmodifiable pages. It re-sends those pages which the

process is found to have dirtied meanwhile. It freezes the process if necessary after

several iterations, to ensure termination of this procedure. The Accent copy-on-

reference mechanism is employed so that a) the incarnation commences execution at

the destination almost immediately, and b) only the pages it actually requires are

copied across the network. They are copied as they are referenced by the process

executing at the destination site. The Accent scheme is reported in [ZAYAS] to

achieve a 58% reduction, averaged over test applications, in the number of bytes

transferred as a result of migration.

The VME bus used in the current Equus implementation provides a raw

bandwidth of an order of magnitude larger than the Ethernet used for

communication in these systems. About 3 Mbyte/sec. is realisable (in contrast, [V85]

reports about 0.3 Mbyte/sec.), so that the largest possible incarnation address space,

occupying most of a node's memory (4 Mbytes), can be copied in just over a second.

In the light of this, the advantages of copy-on-reference and iterative pre-copying

were not felt to justify the implementation work entailed in this context (the 68030

processor includes memory management facilities capable of supporting both). Pre-

copying the unmodifiable text segment is, however, a mechanism for reducing

freeze time which is obtained at little implementational cost.

7.4.4 The Migration Algorithm

A migration involves the following actions (Figure 7.1, overleaf):

[M1] In response to the migration request from M, S sends a nested request

to D. The request includes the RDC identifier and the memory resources required

by the incarnation. If D is able to host the incarnation, it commits the resources and

 108

replies affirmatively. Whatever the reply, S echoes it to M. The incarnation

continues execution at S.

[M2] At this point, the incarnation is locked against increasing the size of its

main components: heap, stack or pincdata, since otherwise these would exceed the

resources allocated at D. If it attempts to grow one of these segments, it is frozen.

(It would be possible to request of D that it also increase the size of the

corresponding segment, but this has not been further examined or implemented).

After resources are committed, D executes two concurrent series of actions, M3 and

M4:

[M3] In the first, the pincdata is fetched from S. This is examined for port

references. Appropriate message queue structures are created, and routing entries

are created in anticipation of messages being forwarded from S. At S, the pincdata

segment is locked against changes at the point that it is fetched, so that D continues

to have a consistent copy. Changes to the pincdata are unlikely to be required

before migration is complete; if they are, the incarnation is blocked. Operations and

notifications are redirected to D from the time that the pincdata has been

transferred. They are handled there unless data is required which has not yet been

fetched from S, in which case they are made pending.

[M4] The other series of actions performed concurrently by D is the fetching

of the incarnation's text, data, stack and register state (in that order). When the heap

segment copying has begun, the incarnation's execution is frozen, to avoid

inconsistencies between the copies of the volatile data segments at S and D. Once

the incarnation execution is frozen, S is able to perform the algorithms for moving

its message queues. Any messages which have been received but not replied to

must be moved first, before the incarnation commences execution at D (in case it

attempts a reply).

 109

As it stands, migration is not atomic in the face of failure. It is possible for D to

fail after an operation has been performed on the incarnation at D, without any

knowledge of this at S. In addition, copies of messages forwarded from S are not

currently kept. To achieve atomicity, it would be necessary to make all operations

and notifications pending and to retain copies of forwarded messages at S, until

confirmation of the incarnation's re-creation at D.

7.4.5 Migration Performance

A migration facility has to perform well if it is to be useful for load balancing and for

responding to node withdrawal. This section reports measurements taken of the

total time to migrate an incarnation, from the point at which the destination node is

committed to the migration, until the incarnation re-commences execution at this

node. This is an upper bound for the incarnation's freeze time. The details of the

measurements are described in Appendix A, Section A.2.

It was found that the elapsed time taken to migrate an incarnation is given

approximately by the following relationship:

 M S D S D

[M1].. inc_migrate

(returns)

request mig 

echo reply 

memory
resources

committed

[M2].. segments locked
against growth

[M3]..

 pincdata locked

against change
 fetch pincdata fetch text ..[M4]

time



 divert operations
and notifications

to D

create message
queues and

address entries

freeze
incarnation

fetch heap,
stack and

register state



 handle/stall
operations and

notifications

forward and
re-route

messages

 execute

Figure 7.1: Actions Performed to Achieve Incarnation Migration.

 110

 migration time = 19 + 1.2p + 0.39s milliseconds, where p is the number of its

ports, and s is its total address space size, in kilobytes.

It takes about 59 milliseconds to migrate a 100 Kbyte incarnation with one port,

and about 420 milliseconds to migrate a 1 Mbyte incarnation with one port.

These can be compared with the following times which are extrapolated from

figures given for other migration implementations2:

Charlotte (implemented on VAX-11/750 computers): 45 + 12.2s
 100 Kbyte process: 670 ms; 1 Mbyte process: 6300 ms.

Sprite [SPRITE] (implemented on Sun-3 workstations): 190 + 3.6s

 100 Kbyte process: 550 ms; 1 Mbyte process: 3880 ms

V [V85] (implemented on Sun-2 workstations): 32 + 3s

 100 Kbyte process: 330 ms; 1 Mbyte process: 3100 ms.

 These comparisons should be treated with caution, because of significant

differences in the performance of the computers and networks used, and because of

the different mechanisms employed to perform migration. In particular, the time

taken to migrate a process in any implementation is mainly a function of the

process's address space size. The networks used in the other implementations have

a bandwidth of the order of 10 megabits per second. The VME bus in the Equus

implementation can sustain a throughput of about 24 megabits per second when

data is copied in four-byte units in a tight loop between two nodes, with no other

bus activity at the time.

The Sprite figure assumes that all pages of a process are transferred upon

migration. Transferring a page involves writing it to disc from the source node, and

demand-paging it from the destination node. In practice, only dirty pages are

written to disc, and some pages may not be required at the destination node. The

Sun-3 workstation is of comparable performance to the 68030 nodes; a Sun-2 is about

half as fast and a VAX-11/750 about a quarter as fast.

If allowance is made for network bandwidth as probably the main determinant

of the coefficient of s in the above formulae, and if allowance is made for processor

speed as probably the main hardware determinant of the constants in the formulae,

2 A similar comparison was made by the designers of the Charlotte migration facility

[CHARLOTTE89]. Some of their extrapolated figures do not seem to be borne out by the information
sources they quote. In particular, they estimate a migration time of 80 + 6s. for the V system.

 111

then the Equus migration facility appears to be of superior or comparable

performance to these other implementations. The absolute migration times make

incarnation migration a very good basis for load balancing and for reaction to node

withdrawal compared to the other implementations, which practice both of these

uses for migration.

7.4.6 Comments on the Migration Implementation

Since the kernel does not provide virtual memory or swapping, migration is not

always possible, for lack of memory resources. In the case of load balancing, it is not

anyway disastrous if a migration cannot be carried out for this reason. In the case of

node withdrawal, the problem is more serious.

In retrospect, a facility to swap incarnations to disc should have been provided,

so that an incarnation can always be moved away from a node, even if this in fact

means swapping to disc until sufficient memory becomes available at the

destination node. A separate version of inc_migrate would be necessary, which

caused the child to migrate away from the current host even when insufficient

memory is available. Where swapping was necessary, the destination D would have

to have sufficient resources to receive the pincdata (containing ports information),

and in the meantime provide queuing for messages sent to the incarnation. This and

the necessary disc transfers involved could be implemented using existing

mechanisms. The proto-incarnation at D could be migrated to another node which

had sufficient memory resources for the full incarnation before D has them.

The restriction of not being able to migrate an incarnation until it has completed

any synchronous invocation is also unnecessary. A receiving kernel keeps a copy of

reply data, in case of a retransmission of the invocation message by the sender when

it has timed out awaiting a reply. The problem is that this data is kept, currently, for

a fixed time, which can be exceeded by the time taken to migrate. So if the

incarnation's invocation were to be prematurely terminated at S and retried at D, the

receiving kernel R might decide erroneously that the repeated invocation message

was a new one. To interrupt synchronous invocations, it would therefore be

necessary to cause a copy of any reply generated as a result of the invocation to be

locked at R. After a retry was made, the reply copy could return to its normal

status.

109

7.5 Summary

This chapter has described the facilities implemented by the kernel for the control of

RDCs and of individual incarnations. Their rationale includes the need to terminate

RDCs, to control node allocation to them, to perform load balancing upon

incarnations and to monitor and control their execution state. It has described how

control relationships are themselves reconfigurable. A dynamically variable set of

incarnations can be parents to a given child, so that a backup can be provided in the

case of parent failure, and so that a pool manager incarnation or debugger, for

example, can be introduced at run time to exercise control over a child.

The chapter has described how incarnation migration was implemented, and

discussed the operational features of this in relation to its intended use. Migration

performance has been shown to be favourable compared to other implementations.

The chapter concluded that kernel facilities should be modified so that migration

away from a node is always possible in bounded time.

 113

Chapter 8

The Kernel

This chapter outlines the design of the Equus kernel. It describes its component

processes and their inter-relationships, and in particular the use of so-called ghost

processes to achieve concurrency and modularity in the kernel's operations. The

communications implementation is outlined, and a description is given of the

algorithms used to locate destinations and re-route messages. The chapter ends

with some performance figures measured for invocation primitives and

communications reconfiguration primitives.

8.1 Kernel Architecture

The kernel is written largely in C, with a small amount of MC68030 assembler. Its

total program size is 186 Kbytes, of which 109 Kbytes is text and 77 Kbytes

initialised and uninitialised data (not including kernel stacks, message buffers and

memory mapping tables, which are obtained dynamically). It consists of processes

supported by a small nucleus of mainly low-level code (Figure 8.1: the ghosts and

system incarnations are described in Section 8.2, and the others in Section 8.4). The

nucleus provides: local process management (for example, creation, scheduling,

stack management); message queue management; communications between local

processes; packet-level network drivers for external communications; protocol

stacks; hardware exception handling and memory management.

The main actions which in general involve interactions between processes

residing at more than one node are the following:

• incarnation creation and migration, and other operations upon incarnations;

• invocations and data copying;

 114

• locating incarnations and ports;

• propagating and re-attaching ports and rebinding streams;

• event propagation;

• incarnation termination and constraint of RDCs' access to nodes.

All of these actions can take place within a single node, but no fundamental

distinction is made in the design between this and the inter-node case. They are all

achieved by passing messages between processes.

Of the processes, the loader, communications manager and time daemon are

constantly present, but the other processes are used to realise incarnations, and vary

G

S

G

S

G

S

loader

local incarnations

comms
manager

Nucleus: Process management,
 message queue management,
 communications drivers,
 exception handling,
 memory management

time
daemon

validates node access and dispatches
local incarnation when requested to
host incarnation

realise incarnations hosted locally
G = ghost; S = system incarnation

performs
periodic
maintenance
tasks

transmits protocol
control messages

Figure 8.1: Main Kernel Components.

 115

in number as the kernel hosts them and as they are migrated away or destroyed.

Processes run in overlapping protected and mapped virtual address spaces which

are backed by pages resident in local physical memory and (for the purposes of

message passing over a VME bus) pages resident in the memory of other nodes but

directly accessible there. The processes execute kernel code in supervisor mode

(MC68030 master and interrupt modes [MC68030]), except when the system

incarnations execute user-level incarnation code – which is their primary function.

All processes have separate master mode stacks for local variables, and share kernel

text and heap segments. Where interactions are necessarily local (for example, in

buffer acquisition), processes share tables and variables, using low-level

synchronization primitives to co-ordinate access.

8.2 Local Incarnations

Every incarnation executes at a host node as two processes, together referred to as a

local incarnation (Figure 8.2). These processes are:

• A system incarnation. This executes the user-level incarnation code, except that

it executes kernel code when the incarnation is being established at the node,

and when it processes exceptions, such as system call traps.

• A ghost process.

8.2.1 Ghost Processes

Ghost processes:

1] handle all operations upon the incarnation, including control operations,

stream and port operations and reads and writes of segments of the

incarnation's address space. Reads and writes occur as part of incarnation

creation or migration, or as part of an asynchronous message receipt or use of

inc_copyto/from.

2] handle notifications of events sent by other incarnations, and handle events

detected locally – causing software interrupt processing if necessary.

3] detect local events of interest to other incarnations and send notifications.

4] handle status probes from other incarnations.

 116

5] generate periodic status probes when a parent has made the incarnation

dependent upon it.

Ghost processes were introduced into the kernel architecture because of:

• the concurrency between the operation and event processing of 1-5 above and

the execution of the incarnations' user-level code;

• and because of the independence of, and therefore concurrency possible

between, much of this processing as carried out for different incarnations.

Ghost System
Incarnation

msg. q msg. q

local incarnation creation requests,
control operations,
data copying requests,
status requests,
event notifications

event notifications,
data copying requests,
status probes

invocation messages

invocation messages,
data copying requests,
control operations,
event notifications,
local incarnation creation requests

rendezvous

Figure 8.2: Local Incarnations and Their Interactions.

 117

Ghosts do not have to synchronize with one another except during migration

and when one ghost handles the other's status probe. Ghosts do require their

corresponding system incarnations to synchronize with them in certain

circumstances. Although the synchronization points had to be programmed with

care to avoid deadlock, they are few. Per-incarnation ghosts simplify the kernel

programming by eliminating the multiplexing of operations between incarnations

that would otherwise be necessary, and by allowing state to be maintained in local

variables. The concurrency afforded by ghosts maximises potential processor

utilisation. When one ghost or system incarnation blocks, either its counterpart in

the same local incarnation or one associated with a different incarnation can still run.

8.2.2 Other Features of Local Incarnations

Dispatching a Local Incarnation

A pool of local incarnations is managed by the kernel. Each member of the pool has

its two processes and associated data structures already created. When a request is

made to host an incarnation – either a new incarnation or one migrated from

another node – the loader either dispatches a local incarnation from this pool, if one

is available, or creates a new one to handle this. The ghost and system incarnation

are engaged concurrently, the system incarnation in loading program text and data,

and the ghost in fetching and processing the pincdata (per-incarnation data,

introduced in Section 7.4.1). This is the realisation of the concurrency described as

part of migration in the last chapter.

The Pincdata

The need to copy and migrate incarnations led to the collection in the pincdata data

structure of all intrinsic data associated with a particular incarnation's operations, so

that this can be simply copied to another node. The pincdata is memory-mapped to

a fixed location. This is firstly so that its internal pointers used in linked list

structures are still valid when copied to a new node (where it is mapped to the same

address). Secondly, the data can be extended in size continuously under this

scheme, as references and other data items are added.

Incarnation Address Space

Ghosts and system incarnations share the same per-incarnation MC68030

supervisor-mode address space (Figure 8.3). Each address space includes the

common kernel text and heap segments. This means that the loader,

communications manager and time daemon can execute in any context. And the

 118

system incarnation and ghost of a local incarnation operate in the supervisor and

user counterparts of the same MC68030 memory management context, so that

memory management switches are not required between them. The address

mappings of the user-level incarnation stack, heap and text are identical between

user and supervisor modes. This eliminates the need for address translation

between kernel and user mode for the same incarnation when system calls are

processed. It also allows a buggy kernel to overwrite incarnation address spaces;

but the kernel is sufficiently robust for such bugs not to have been encountered.

Each processor card occupies a unique range of addresses accessible over the

VME bus. The memories of the other processor cards are mapped identically into

each supervisor context. This is in order that message-passing can be implemented

using memory-to-memory copying. The MC68030's transparent translation registers

[MC68030] are used to map the large address ranges involved; they do so at little

Kernel text, data, stacks

Pincdata

Text

Text

Heap

Heap

Other nodes' RAMs

Stack

Stack

Kernel
Space

User
Space

0

2
32

Figure 8.3: Incarnation Address Space.

 119

operational expense, and their use avoids the need for corresponding memory

mapping tables in local memory.

8.3 Other System Processes

The Loader

This process controls access to the node and monitors its activities. There are two

categories of requests processed by it. Belonging to the first category are requests

concerned with overall node management in the context of the pool. These are: to

enable incarnations belonging to a given RDC to be hosted at the node; to withdraw

this right and optionally terminate any current incarnations belonging to it there;

and to report the status of the node, in terms of processor loading, memory

utilisation and numbers of incarnations hosted.

Belonging to the second category are requests that a particular incarnation be

hosted at the node. A host request to loader contains:

• the incarnation memory requirements;

• a bit string identifying the associated module text, so that this can be shared if

an incarnation associated with the same module is already present at the node;

• the RDC's unique identifier, which the loader looks up against its access list.

Communications Manager

The communications manager is a utility process which sends responses such as

acknowledgements for asynchronous messages to processes in other nodes. For

reasons of efficiency, an interrupt handler rather than a separate process is used to

do the majority of the processing associated with attempting to deliver incoming

messages. Using a process would entail context-switching overheads additional to

those of the handler itself. However, if a response message is required, then the

interrupt handler cannot send it. If it did, this could cause it to wait for a low-level

condition, which would deschedule the unrelated process that happened to be

executing at the time the interrupt occurred. Therefore the handler generates the

response message but passes it to the communications manager for transmission.

 120

Time Daemon

The time daemon runs periodic tasks. In particular, it garbage-collects reply

message data buffers after these are found to have aged more than an amount which

is dependent upon the retry time used in the transmission protocol. It also

periodically checks the integrity of kernel data structures. In particular, it checks

that kernel stacks have not overflowed.

8.4 Communications

8.4.1 Delivery Mechanisms

The communications subsystem of the kernel consists of a few basic mechanisms for

the delivery of single-packet kernel messages and for the reliable transport of bulk

data. They are used directly for message passing between kernel processes, and

they are used to implement invocations between incarnations and communications

reconfigurations.

A kernel message consists of:

• a delivery header, containing the kernel message's address and other data used

by the delivery mechanisms;

• a fixed-size header set by the sending process which identifies the function of

the message to the recipient process and provides parameters (the entire data

for many kernel-kernel requests and replies fit into this header);

• optional extra data – as much as fits into a packet.

Each process possesses one or more data structures used to control the

enqueuing and reception of kernel messages, called kernel ports. In the case of

system incarnations, these are used to implement incarnation ports: each incarnation

port is associated with a kernel port.

There are three types of delivery mechanism available to any sending process:

request-reply, asynchronous send and bulk data transfer. Each is based upon an

unreliable packet transmission service over the underlying network.

1] In a request-reply interaction, a process sends a single kernel message and

receives back a kernel message. One or more processes receive the request, and

any can send a reply. One of these replies is returned to the sender by default

 121

(the first to arrive back), but it can obtain others. This service attempts to be

reliable in the face of packet loss or corruption: at regular intervals the request

packet is re-sent in case previous packets were dropped. If requested, the

delivery service ensures that at most one copy of the request is delivered to any

recipient, despite repeats. When a kernel message has been queued but not

received it is said to be arrived. All arrived messages are held together on a per-

process queue, but distinguished by their destination kernel port address. The

use of a single queue facilitates the movement of all arrived messages when an

incarnation migrates. When a kernel message has been received but not replied

to it is said to be attached, and is placed on another per-process queue. When it

has been replied to, a copy of the reply data is held on a per-process reply

queue, so that the reply can be repeated if a retry is received. Only the last,

unacknowledged packet of reply data is retained. Keeping a copy of this reply

packet saves an extra acknowledgement message which would otherwise have

to be added to the reply protocol.

2] A kernel message which is sent asynchronously is acknowledged immediately

by any receiving kernel which possesses a matching destination kernel port; no

reply data are returned to the sender. The asynchronous delivery service

retries a stipulated number of times when no acknowledgement is received.

3] Finally, the bulk transfer service is used to transport reliably blocks of data

which are larger than can fit in a single kernel message. This service splits the

data to be sent into separate packets sent out over the network, which are

reassembled in the correct order at the destination. To keep protocols simple, it

is design policy for the endpoints of a bulk transfer not to be moved (as a result

of a reconfiguration) whilst it takes place.

A synchronous invocation is realised by a request-reply interaction; extra data is

transferred between receiving and replying to the kernel message which is the

header of the invocation message – whilst the invoker is blocked. Asynchronous

invocations are realised by sending the header (or entirety, in the case of inc_send) of

the invocation message using the asynchronous kernel message delivery service. If

there is extra data belonging to the invocation message to be transmitted, then this is

obtained from the sender's ghost process, using the bulk transmission service.

inc_copyto and inc_copyfrom also achieve data copying by bulk transmission to and

from the corresponding ghost.

Operations are directed either to a port belonging to the loader, or to a port

belonging to the ghost process of the incarnation concerned; event notifications are

 122

directed to ghost ports. Each such ghost port is managed as if it were an incarnation

port attached to a channel, so that it can be reconfigured as an incarnation port when

migration takes place.

8.4.2 Addressing

A kernel message is addressed with one of two types of address:

A kernel port address

This is a kernel port identifier: an integer which can be rapidly decoded into a

kernel node identifier and the memory location of the port data structure within

it;

A logical address

This consists of:

i) a node's kernel identifier or a flag denoting broadcast;

ii) a global identifier (a bit string which is constructed to be globally unique

over a reasonable time period);

iii) a type value which qualifies the global identifier.

Kernel port addresses are used alone when the destination kernel port is known

and is known to be fixed. For example, bulk data transmissions take place under

these circumstances. Logical addresses are used to reach and locate kernel ports

using logical destinations.

At each node there is a database of global identifiers. A record in the database

consists of an identifier such as is used in logical address field ii), a type value such

as is used in address field iii), and the identifier of a kernel port. There can be more

than one record for a given global identifier. The values of the global identifiers and

types are not interpreted by the delivery system, but are used to match given key

values in logical addresses. The database and logical addresses are used in

conjunction as follows:

1] A kernel message normally carries a kernel port address. This is decoded to

reach the node whose kernel identifier appears in it.

2] To reach a process using a global identifier at a particular node – such as the

loader at a given node – logical addresses are used with part i) containing the

node's kernel identifier, ii) the global identifier and iii) the type. The type is

 123

DLVR_NODE_SERVICE in the case of the loader (a well-known global

identifier is used to identify the loader). The type DLVR_GHOST is used in the

case that ghosts are to be reached which have a kernel port registered in the

database at that node. Only entries which match in type as well as identifier

are used for delivery. For example, a control message concerning a channel can

be delivered to all ghosts interested in such messages, without its being

delivered to incarnation ports attached to the channel at the node. The latter are

registered with type DLVR_CHANNEL.

3] A multicast invocation message is broadcast to all nodes. It carries a logical

address in which the global identifier is that of the channel involved. Nodes

deliver the message to any kernel ports with database entries under this

identifier with the type value DLVR_CHANNEL, and drop the message

otherwise. (The kernel could support multicasts with other global identifer

types, but these are not used).

8.4.3 Locating a Kernel Port

It is sometimes necessary to locate the appropriate destination kernel port when a

unicast kernel message is to be sent. Either no kernel port address is known, or the

kernel port is invalidated as a destination after certain types of reconfiguration have

taken place (this is described in Section 8.5).

If the only address known for a unicast kernel message is a logical address, a

destination kernel port is located and the message is delivered by the same

broadcast. If a node possesses a database entry of matching global identifier and

type, it delivers the kernel message locally. The kernel port identifier is

automatically returned to the sender by the delivery system in any

acknowledgement or reply. The sender is then able to use this kernel port address

in subsequent transmissions.

If the kernel port is one used to implement an incarnation port or is a ghost port,

however, then kernel messages sent to this kernel port address may later be subject

to redirection as the result of a communications reconfiguration or incarnation

migration. The old and new destination kernels are co-ordinated so that: i) The new

site is given a database entry with the appropriate global identifier and type

DLVR_CHANNEL. ii) The database entry is removed from the original destination

kernel. iii) Redirection information is placed between them. Redirection entries are

looked up by a kernel port identifier. Redirection entries are made according to the

reconfiguration protocol described in the next section.

 124

The delivery system discovers that redirection is required when it attempts to

deliver a unicast message at a kernel port which proves not to exist. The kernel

messages are forwarded as datagrams: no acknowledgement or reply is required (if

any) until they have been queued or received, depending on the transmission

semantics. Whatever the means by which the kernel port is located, any

acknowledgement or reply message carries the final address with it, so the sender

can update its version.

The delivery system can follow a chain of redirection entries if necessary.

However, the oldest redirection entries are discarded when the kernel is running out

of table space, and redirection entries are useless when the node they reside at fails

or becomes unreachable. When no more redirection entries can be found or none

can be reached, the delivery system at the sender's node is either informed of this by

the terminal node of the chain, or times out through lack of any response. It then

resorts to broadcasting for an entry with the global identifier of the logical address,

with type DLVR_CHANNEL (which is used with all ports subject to redirection).

8.4.4 Multicasting

When a multicast is made, every node incurs an overhead, even if no destination

kernel ports are located there. But the alternative, as has been pointed out in chapter

4, is for the locations of multicast address bindings to be known and the bindings

updated whenever incarnation ports are destroyed and propagated. The overhead

of deciding that an incoming message is unwanted is mostly that due to accepting

the packet (around 0.5 milliseconds), and a search of the database – which can be

estimated at up to the order of 0.1 milliseconds for the order of a hundred entries on

a 2 - 3 MIPS MC68030. The overhead could be eliminated from the main processor

by employing a co-processor dedicated to handling communications at every node.

A co-processor would also be an advantage in a distributed system with a topology

which requires routing, to offload this function from the nodes' main CPUs.

The VME-based development computer system does not have hardware support

for broadcast or multicast, and point-to-point packet delivery is used instead. The

cost of this is acceptable because of the small number of nodes involved, and

because the implementation has been carried out such that the messages are

transmitted concurrently.

 125

8.5 Changing the Receiver

The following algorithms were devised for the reconfiguration mechanisms

described in Chapter 6, and for communications reconfigurations consequent upon

incarnation migration. Their aim is:

1] to forward kernel messages already queued at a port;

2] to cause subsequent messages to be given the new, correct kernel port address

at source, and to re-route them if necessary before this has been achieved;

3] to ensure that delivery guarantees of reliability are maintained despite

reconfigurations;

4] to ensure that kernel messages sent by the same process are received at a port

in the same order as they were sent (when delivery is reliable), despite

reconfigurations3.

5] to prevent unintended gaps in the sequence of messages received at a port

affected by a reconfiguration, by ensuring that the forwarding of messages

from a port involved in a reconfiguration is not interleaved with reception from

the port.

8.5.1 Port Propagation

When a port attached to one or more channels is propagated, an incarnation receiver

receives a kernel message containing:

• the global identifiers of the channels concerned;

• kernel port and logical addresses for the ghost port of the incarnation sender

from which it is being propagated.

In lines 3-8 of Figure 8.4, receiver creates a port and, for each channel, associates

an attachment with it. Each attachment to the port is realised by a separate kernel

port. Although it is not shown in the figure, the kernel ports are made proxies for a

single, main kernel port: a kernel message addressed to a proxy port is delivered to

the main kernel port it is a proxy for. This arrangement allows messages arising

3 When a port is propagated but the message queue is retained at the original port, it is possible for

invocation messages to be received out of order, at different ports. But it is the application's responsibility not to
perform such a reconfiguration if it violates consistency.

 126

from multiple attachments to be received at a single port, which requires simpler

and cheaper logic than reception from multiple kernel ports. And at the same time

it allows control over routing messages at the level of an individual channel.

Receiver then requests that sender activate the reconfiguration and blocks until

this has been done (line 9). Thereafter it remains only to enter the database entries

for the channels (lines 10-13).

Figure 8.5 shows the algorithm followed by sender. If the incarnation port was

not marked for retention on propagation, the current message queue is forwarded

(lines 6-8). Messages which have already received acknowledgements are

forwarded reliably. A single destination kernel port address is shown for the sake of

clarity, but in fact each message is forwarded to the proxy kernel port set up by

receiver to correspond with the message's channel. The identifier of this proxy port

will then be carried in any acknowledgement, causing the sender to use the proxy

port's identifier as the address in subsequent messages.

receiver:

1 handleProp(propRqst: propagation_rqst)

2 begin

3 p = portCreate()

4  c  propRqst.channels

5 do

6 k = kernelPortCreate()

7 portMarkAttach(p, c, k)

8 od

9 PropActivate(propRqst.ghost, propRqst.portid)

10  a  p.attachments

11 do

12 dbaseEnter(a.kernelPort, a.chnl, DLVR_CHANNEL)

13 od

14 end handleProp

Figure 8.4: The Algorithm Followed by a Recipient of a Propagated Port.

 127

The routine forwardMessages allows new messages to arrive whilst it is

forwarding. Before forwarding any messages, it marks the kernel port as "moving".

This flag causes the delivery system to make arriving unicast kernel messages

pending: it places them on the port's arrive queue, marks them as pending, but does

not acknowledge asynchronously sent kernel messages. Multicast messages are

dropped when the kernel port they would otherwise be delivered to is moving. The

alternative to queuing pending messages would be to drop them but send an

acknowledgement which causes senders to retry later. But estimating a retry time is

difficult, and can result in senders being rebuffed the next time they retry, or

blocked longer than is necessary.

If forwardMessages encounters a pending message, it finishes. These are

forwarded later, as will be described. This forwarding routine will terminate,

sender:

1 handlePropActivate(propActRqst: activate_prop_rqst)

2 begin

3 p = portLookup(propActRqst.portid)

4 k1 = p.mainKernelPort

5 k2 = propActRqst.destKernelPort

6 if(not p.retained)

7 forwardMsgs(k1, k2)

8 fi

9 reply

10  a  p.attachments

11 do

12 dbaseDelete(a.kernelPort, a.chnl, DLVR_CHANNEL)

13 forwardPendingMsgs(a.kernelPort, k2)

14 redirectionEnter(a.kernelPort, k2)

15 kernelPortDelete(a.kernelPort)

16 portMarkDetach(p, a)

17 od

18 if(not p.retained)

19 portDelete(p)

20 fi

21 end handlePropActivate

Figure 8.5: Activating Propagation on Request from Recipient.

 128

because making arriving messages pending bounds the number of messages to be

forwarded by the number of senders. Without the use of pending messages, a

zealous sender of asynchronous messages could keep the forwarding routine

indefinitely occupied.

After forwarding messages, sender then replies to and thus unblocks receiver (line

9), which proceeds immediately to set up DLVR_CHANNEL database entries. For

each channel, sender forwards pending messages4 just before setting the redirection

entry (lines 13-14). When the kernel ports are deleted (line 15), the redirection

entries become used by the delivery system to forward arriving messages. The

attachments are unmade from the port data structure (line 16). The port itself is

deleted if it was not retained on propagation (lines 18-20).

Although multicast messages are dropped whilst the main kernel port is marked

moving, subsequent retries will find an entry at receiver's node, unless they all find

the same state of a new reconfiguration. This situation has been left as possible but

of neglible probability. It would lead the transmitter of the messages to give up.

8.5.2 Port Attachment

In this case, a manager causes a port belonging to incarnation attach_inc to become

attached to a channel (assumed unicast), and a port belonging to an incarnation

detach_inc to become detached from it. The manager operates upon attach_inc, which

responds by creating a new kernel port and attachment entry for its incarnation

port, and then operating upon detach_inc to activate the detachment of its port and

the forwarding of any arrived messages. The algorithms employed by attach_inc

and detach_inc follow those for port propagation between them, except that:

• only one channel is involved, and only messages which have arrived over this

channel are forwarded from detach_inc's port;

• and the incarnation port has to be locked against reception whilst forwarding

takes place, to guard against reception by detach_inc being interleaved with the

forwarding of arrived messages. Interleaving would cause gaps in the

sequence of messages arriving at the newly-attached port.

4 If the port is retained, there is the option to detach it when propagation is initiated, so that no more

invocation messages are queued at the port. This is achieved by marking the main kernel port as moving. If this

option was selected, there may be pending messages at the kernel port at this point.

 129

8.5.3 Rebinding a Stream

In this case, a manager rebinds a stream belonging to incarnation sender. Messages

sent using the stream are currently delivered to a port belonging to an incarnation

current_receiver. If the stream is to be rebound without affecting messages already

sent but not received – for example, under failure conditions – then the manager

itself rebinds the stream. Otherwise, messages sent from the stream and queued at

current_receiver's port are first de-queued and forwarded over the stream's new

channel. The manager requests current_receiver to perform this operation;

current_receiver is then able to co-ordinate message re-routing.

Figure 8.6 shows the algorithm used by current_receiver's ghost in performing stream

rebinding. Only messages sent using the given source stream are forwarded (line 9).

The incarnation port is locked against receives before forwarding takes place and

unlocked afterwards (lines 8 and 12). The forwarding routine sets the delivery

system to make pending any kernel messages sent using the stream, after it has

forwarded existing arrived messages. Current_receiver operates upon sender to

rebind the stream at line 10, and when this operation returns, it forwards any

message which arrived in the meantime (there can be at most one). In handling the

rebind operation from current_receiver, sender's ghost only has to set the new channel

and destination kernel port values. Any invocation in progress is not affected by

this rebinding operation itself. There is no need, since the invocation message will

be routed correctly when pending messages are forwarded (line 11), if it has not

been already by the forwarding routine.

 130

The destination kernel port used – k2 – is a value held in some stream attached to

the appropriate channel, and it could be out of date. But the forwarding procedure

will still locate the correct kernel port destination, using the same location algorithm

as is used for an invocation.

8.5.4 Migration

When an incarnation migrates, the source kernel reliably delivers all the kernel

messages which have been received but not replied to. It then forwards all arrived

kernel messages and places redirection entries as for port propagation. It notifies

the destination ghost when forwarding is complete, whereupon the latter is able to

make database entries, as for port propagation.

8.6 Performance

This section presents figures for the implementation's performance for invocations

and the mechanisms to change the receiver of invocations. The figures are given as

a guide only, to judge gross system performance. A full description of each of the

experiments made to obtain these measurements is given in Appendix A.

current_receiver:

1 handleRebindAtCurrentReceiver(rebRqst: rebind_at_curr_receiver_rqst)

2 begin

3 p = portLookup(rebRqst.portid)

4 k1 = p.mainKernelPort

5 s = rebRqst.streamToRebind

6 c = rebRqst.newChannel

7 k2 = rebRqst.newKernPort

8 portLockReceives(p)

9 forwardArrivedMsgsByStream(k1, k2, s)

10 rebindAtIncWithStream(rebRqst.GhostWithStream, s, c, k2)

11 forwardPendingMsgByStream(k1, k2, s)

12 portUnlockReceives(p)

13 reply

14 end handleRebindAtCurrentReceiver

Figure 8.6: Handling a Rebind Operation at the Current Receiver.

 131

Invocations

Table 8.1 gives figures comparing the performance of the inc_invoke primitive with

comparable calls in other implementations. These are all request-reply calls which

transmit a minimal amount of user data (0 - 32 bytes) in each direction. In all cases,

one sending process or thread of control sends to one receiving process or thread of

control on a different node.

The implementations used for comparison all employ local area networks whose

bandwidth is an order of magnitude less than the VME bus used in the Equus

implementation. It is not surprising that the bulk data transfer rates achieved for the

Equus implementation are considerably higher, and these figures are not given here

but appear in Appendix A, Section A.1.

The figures for other implementations also appear in a comparison made by

implementors of the Firefly RPC system [FIREFLYRPC].

These figures constitute only a rough guide for comparison, because of variations

between the implementations in call semantics, in computer systems and in whether

the calls are made from user space to user space, or from kernel space to kernel

space. Nonetheless, it can be seen from Table 8.1 that the Equus implementation

gives a respectable performance when measured against these other systems.

Moreover, lack of time has meant that little effort has been put into optimising the

System Processor Call Time (milliseconds)

Cedar [RPC] Dorado – custom 1.1

Amoeba [AMOEBA89] MC68020 1.4

V [V88] MC68020 2.5

Sprite [SPRITE] MC68020 2.8

Equus MC68030 2.9

Firefly [FIREFLYRPC] MicroVAX-II 4.8

Amoeba/Unix [AMOEBA89] MC68020 7.0

Table 8.1: Performance of Request-reply Primitives.

 132

Equus implementation, whereas considerable optimisation effort has been reported

for Amoeba, V and Firefly RPC.

Changing the Receiver

Table 8.2 shows the results of measurements taken to gauge the overhead to a client

of a reconfiguration to change the server peer which processes its requests. The

client uses inc_send to send 10,000 "requests" asynchronously in a simple loop

without pausing. Each request consists only of the 32-byte message header. There

are two server peers, which receive the requests but do not perform processing on

them.

Measurements were taken of the total time taken by the client to complete all the

inc_send calls, in four different situations:

1] Only one peer receives all the requests.

2] The peers alternate in receiving the requests. Each receives 100 requests and

then propagates its port in a message to the other.

3] The peers are alternated by a separate incarnation which periodically re-

attaches their ports to the request channel.

4] The peers are alternated by a separate incarnation which periodically rebinds

the client's request stream.

In 3 and 4, 100 reconfigurations take place, with about 100 messages being

received in between reconfigurations. In all reconfigurations, the queue of messages

at the current peer's port is forwarded as a result of the reconfiguration. This is

expected to be a worst case, since the sender has to be blocked whilst messages are

forwarded.

The figures for the overhead are calculated from the total elapsed time by

subtracting the corresponding figure for the case with no reconfigurations, and

dividing by 100 (the number of reconfigurations). The number of messages

forwarded refers to acknowledged messages; at most one pending message can also

have been forwarded per reconfiguration (see Appendix A, Section A.3).

 133

It is not surprising that port propagation turns out to be the most expensive form

of reconfiguration of the three. In the time it takes to propagate the port in a user-

level message (about 2 milliseconds), neither peer is receiving the requests. Arriving

requests therefore accumulate at the port being propagated. When the propagated

port is received, these queued messages (about 2 of them per reconfiguration) have

to be forwarded before the reconfiguration is complete and new messages can start

arriving at the new port.

In the cases of port attachment and stream rebinding, the reconfiguration

operation is applied whilst the current peer still attempts to receive requests.

Reception is in fact blocked whilst queued messages are forwarded, but the queue of

acknowledged messages cannot grow during this interval. This is reflected in the

smaller numbers of messages which the kernels forwarded.

It may be possible to improve the reconfiguration algorithms. Asynchronous

invocation messages could be delivered to the new port and acknowledged – thus

allowing senders to continue – at the same time as queued messages are forwarded

between the old and new ports. To preserve invocation order, message reception at

the new port would have to be inhibited until previously delivered messages had

been forwarded. Nonetheless, at 3.5 - 5 times the cost of one of the invocation calls

involved, the above figures for reconfiguration costs are encouraging. Further

measurements are required, in which request processing is performed (or simulated)

by the peers, and in which a variety of invocation primitives and amounts of extra

Experiment Elapsed send
time

(milliseconds)

No. of
reconfig-
urations

No. of
messages

forwarded
(both kernels)

Overhead per
reconfig-
uration

(milliseconds)

no reconfig-
urations

21900 0 0 0

port
propagation

22900 100 201 10

port
attachment

22710 100 84 8

stream
rebinding

22640 100 77 7

Table 8.2: Overhead to Client Due to Communications Reconfigurations.

 134

data are used by the clients. The implementation was designed so that the existence

of extra data in invocation messages would not significantly increase

reconfiguration costs (Section 4.4), but this requires verification. These additional

measurements were not made for lack of time.

8.7 Summary

This chapter has presented the design of the major components of the kernel which

are specific to the RDC model. It has described the kernel's architecture in terms of

the communicating processes between which its tasks are divided. The most

important among these are the loader and the ghost processes. The loader controls

access to the node by RDCs, and the ghost processes handle operations upon

invocations and event notifications sent to them. There is one ghost process per

incarnation at the node, so as to maximise the concurrency of the kernel's

operations. Concurrency was required to simplify the programming of the kernel

by eliminating explicit multiplexing (many of the tasks it performs can be processed

independently for different incarnations), and to reduce the number of bottlenecks

in its operation.

The communications subsystem of the kernel has been described, and the

algorithms employed to change the destination of invocation messages have been

presented. Performance figures have been given which show that invocation times

are comparable with those found in other implementations. Figures have also been

given for reconfigurations which change the destination of invocations. Further

measurements are required, but these initial figures are promising.

 135

Chapter 9

Conclusion

9.1 Summary of Contributions

This dissertation has presented a model for reconfigurable distributed computations

called RDCs, and its implemented operating environment, Equus.

The model and its environment are motivated by the need to program

distributed computations which can adapt to run-time conditions, such as processor

availability and the load imposed upon servers by their clients.

The main argument of the dissertation is that the RDC model and Equus provide

a practical and general framework for programming solutions to problems

involving reconfiguration. This framework is realised in the following main

contributions:

• A comprehensive set of mechanisms has been provided for establishing and

changing a distributed computation's configuration.

• The programmer only has to declare a configuration, rather than be

concerned with its fabrication. Reconfigurations can be made in the form of

migration and in the form of changes to the incarnation population and

interconnection structure. The two types of reconfiguration can be made

independently.

• Using stream space, interconnectivity can be expanded through naming

conventions. This eliminates the programming problem of having to use existing

connectivity.

 136

• The implementation has been divided between a small kernel with good

performance, and more easily modifiable user-level code for configuration

establishment, reference propagation (stream space), node allocation and load

balancing.

• A synthesis of existing communications and reconfiguration paradigms has

been made, so that reconfiguration management can be made transparent to a server

incarnation connected to loosely coupled clients.

• An analysis has been given of the conditions which must be met before any

communications reconfiguration can be applied, if application consistency is to be

preserved.

• In the important case of servers which reconfigure in relation to loosely

coupled clients, the design of the model enables the servers to reconfigure whilst

preserving consistency, without the need for interaction with their clients.

Overview of RDC Model and Implementation

Incarnations are heavyweight processes upon which reconfiguration operations can

be performed, including migration and re-connection of their communications

interfaces. As currently implemented, they are single-threaded, but this is not an

essential restriction in the model. Incarnations are mapped explicitly as they are

created, or they can be mapped transparently by an external load balancing facility

(the pool manager).

The structural components that go to make up the interconnections between

incarnations – their streams and ports and the channels to which these are attached –

have been designed to provide for all possible communications relationships to be

established. Interactions are based upon the client-server and object-invoker

paradigms, and include multicast communications.

Equus creates the primary incarnation of an RDC. Thereafter, the initial

configuration is established by declaring a set of incarnations to be created, and a set

of channels with character string labels. Each incarnation is declared to have an

interface associated with one of the channels. The desired connectivity is created

between the incarnations whose streams and ports are declared to be attached to the

same channels. Streams, stream handles and port handles can be deposited in

stream space as a result of setting up a configuration. Stream space provides a

means of propagating these and other references, to serve dynamic needs such as

those due to requests from clients. Incarnations which provide references via stream

 137

space do not have to synchronise with incarnations requiring their references. Nor

do they have to be concerned with their connections to the incarnations they supply.

Stream space caching eliminates redundant fetches from the stream space

repository.

An important structure which subsumes a number of problems of

reconfiguration is that of a set of server peer incarnations with clients. There are

three alternative reconfiguration mechanisms to change the identity of the server

peer that processes requests from given clients. The design of the interconnection

components and these mechanisms means that clients can be affected singly or can

be grouped as required with respect to these reconfigurations. The mechanisms can

be applied transparently by external manager incarnations, or applied by mutual co-

operation of the server peers involved if a decentralised management scheme is

required.

The design of ports as queues of invocation messages which can be manipulated

as part of reconfiguration means that re-associations between clients and server

peers can take place consistently in bounded time. A sufficient pre-condition for

such a reconfiguration to take place is for the current peer not to receive further

requests from the client once it has completed any current transaction. Meeting this

condition does not require interaction with the client concerned, and does not have

to affect server processing for other clients.

The control network represented by an RDC's incarnations and any external

management incarnations which may be employed (such as ones belonging to the

pool manager) is itself reconfigurable, so that control can be passed to server RDCs

and so that controllers can be replaced in the event of failure. The control

mechanisms enable user-level code to be used to implement the node allocation and

load balancing facilities provided by the pool manager. The design of the migration

facility has been presented in relation to its use for load balancing and reaction to

imminent node withdrawal. Its performance for load balancing is good when

compared with other implementations in which migration-based load balancing is

practiced, allowing for differences in communications bandwidth and processor

type. Some improvements are necessary in relation to node withdrawal, but these

could have been carried out straightforwardly given more time.

The chief feature of the kernel's architecture is the presence of per-incarnation

ghost processes for the handling of operations and event notifications sent to

incarnations. Operations and event notifications can be processed concurrently with

the incarnation's execution, and concurrently with processing due to other

 138

incarnations at the same node. The use of ghosts simplified the multiplexing of the

kernel's activities. For example, the ability to perform multiple migrations

concurrently is an immediate consequence of this. The organisation of the

communications infrastructure was a key component of the implementation effort.

The algorithms used to achieve redirections of invocation messages as a

consequence of communications reconfigurations and incarnation migrations have

been presented. These preserve delivery guarantees and the ordering of invocation

messages. The performance of the (unoptimised) invocations implementation is

respectable when compared with other implementations. Initial figures for the

performance of the reconfiguration mechanisms to change the destination of

invocations are encouraging.

9.2 Further Work

There are two main areas in which the contributions described by this dissertation

can be developed further. Firstly, there is the area of system servers providing

shared facilities to client applications. Servers can improve their performance in

relation to clients by matching their utilisation of hardware resources with their

current client load. Secondly, there are those application domains which require

intensive calculations, such as image processing. Computationally intensive

applications can benefit by being able to harness every available processor in an

under-utilised distributed computer system.

Whilst the RDC model and Equus together provide a framework within which

adaptive servers and parallel applications can be realised, there is a lack of

programming tools to simplify this task.

During the course of their development, the computational model and its

implementation underwent considerable improvements in the light of

implementation experience and application requirements. But what remains to be

done is to write RDCs which really utilise the mechanisms developed, for

applications with hard performance or consistency requirements. This practical

experience is necessary if the right tools are to be developed. It is also necessary if

the components of the operating environment upon which optimisation effort

should be focused are to come to light.

Server Harnesses

Systems programmers writing adaptable servers must be directly concerned with

reconfigurations. The RDC model allows for reconfiguration management and

 139

service provision to be separated, between manager and server peer incarnations

associated with different modules. What is required for both manager and server

peers are generalised harnesses. These would perform the necessary monitoring,

synchronisation and reconfiguration actions, whilst presenting the server writer

with an interface which is largely free of such concerns. Monitoring functions and

reconfiguration descriptions would have to be supplied by the application.

Declarations made at initialisation are all that should be required for this.

Programming Systems for Applications

For applications writers, the ideal tool would be a parallel programming language

which avoided concern with configuration as much as possible, whilst allowing for

the run-time support system to reconfigure transparently. The languages Linda and

Orca go some way towards this goal (section 2.3.1). But neither provides a means

for the programmer to declare which processes can or should be dynamically

created and destroyed in response to variations in node availability during run time.

Neither Linda nor Orca allows the programmer to declare under what application-

specific circumstances these reconfigurations are permitted. Both programming

models present scaling problems. It may be that problems of scale could be reduced

by transparently partitioning the virtually shared data space and dynamically re-

connecting processes to partitions. It seems a promising line of investigation to

enquire whether virtually shared data could be efficiently implemented as a

multiple-peer server, of which processes belonging to parallel programs are clients.

Persistence

The present implementation assumes that every RDC runs to completion in one

period of execution. This may not be desirable if, for example, loading conditions

arise under which very only slow progress can be made. Very long-running

applications could be inactivated altogether until conditions improve, rather than be

forced into a state of poor performance which nonetheless increases the load on the

system as a whole.

The swapping mechanism required to improve the node-to-node migration

facility could be extended naturally to that of migration to disc. By migrating all of

its incarnations to disc after making them quiescent (as defined in Chapter 6), an

RDC becomes a persistent object whose execution can be re-established. The

mechanism by which it is currently envisaged that the pool manager informs an

RDC of additions to its node allocation could in principle be extended so that it

would cause the requesting incarnation to be automatically migrated back to a node

 140

for continued execution. This could then set about migrating the other incarnations

from disc. The present kernel port location algorithms would suffice to re-connect

incarnations, as they use their streams upon re-execution.

 141

References

[ACTORS] G. Agha.
ACTORS - A Model of Concurrent Computation in Distributed
Systems, MIT press.
1986.

[AMOEBA86] A. Tanenbaum, S. Mullender, R. van Renesse.
Using Sparse Capabilities in a Distributed Operating System.
Proc. 6th. International Conf. on Distributed Computer Systems,
IEEE, pp. 558-563.
1986.

[AMOEBA89] R. van Renesse, Hans van Staveren, A. Tanenbaum.
The Performance of the World's Fastest Distributed Operating
System.
Software – Practice and Experience, vol. 19, pp. 223-234.
Mar. 1989.

[AMOEBA90] S.J. Mullender, G. van Rossum, A.S. Tanenbaum, R. van
Renesse, H. van Staveren.
Amoeba - A Distributed Operating System for the 1990s.
IEEE Computer, vol. 23, no. 5, pp. 44 - 53.
May 1990.

[ARGUS] B. Liskov.
Distributed Programming in Argus.
Communications of the ACM, vol. 31 no. 3, pp. 300-312.
Mar. 1988.

[BRINCH] P. Brinch Hansen.
Distributed Processes: A Concurrent Programming Concept
Communications ACM, vol. 21, no. 11, pp. 934-941.
Nov. 1978 .

[CHARLOTTE87] Y. Artsy, H. Chang, R. Finkel.
Interprocess Communication in Charlotte.
IEEE Software, vol. 4, no.1, pp. 22-28.
Jan. 1987.

 142

[CHARLOTTE89] Y. Artsy, R. Finkel.
Designing a Process Migration Facility - The Charlotte
Experience.
IEEE Computer, vol. 22, no. 9, pp. 47-56.
Sep. 1989.

[CHORUS] M. Rozier, L. Martins.
The Chorus Distributed Operating System: some Design
Issues.
Distributed Operating Systems: Theory and Practice, (ed. Y. Paker
et al), NATO ASI Series, vol F28, Springer-Verlag, pp. 261-287.
1987.

[CONIC89a] J. Magee, J. Kramer, M. Sloman.
Constructing Distributed Systems in Conic.
IEEE Trans. Software Engineering, vol. 15, no. 6, pp. 663-675.
June 1989.

[CONIC89b] J. Kramer, J, Magee, A. Young.
A Refined Model of Change Management in Distributed
Systems.
Proc. 3rd Workshop on Large Grain Parallelism,
SEI/CMU.Pittsburgh, USA.
Oct. 1989.

[CONIC89c] J. Kramer, J, Magee and M. Sloman.
Managing Evolution in Distributed Systems.
Software Engineering Journal, pp. 321-329.
November 1989.

[CRAFT] D. H. Craft.
Resource Management in a Distributed Computer System.
Technical report no. 73, University of Cambridge Computer
Laboratory.
1985.

[CSP] C.A.R. Hoare.
Communicating Sequential Processes.
Communications ACM, vol. 21, no. 8, pp. 666-677.
Aug. 1978

[CSR87] M. Barton, N. Edwards.
Occam in a Reconfigurable Local Area Network.
Proc. of the IFIP Conf. on Distributed Processing, Amsterdam, pp.
295-304.
Oct. 1987.

 143

[CSR89] N. Edwards.
Dynamically Reconfigurable Systems.
PhD dissertation, Dept. of Electrical Engineering and
Information Technology, Univ. of Bristol, UK.
Mar. 1989.

[DANNENBERG] R.B. Dannenberg.
Resource Sharing in Network of Personal Computers.
Tech. report CMU-CS-82-152, Carnegie-Mellon university, USA.
Dec. 1982.

[DEMOS83] M. Powell, B. Miller.
Process Migration in DEMOS/MP.
Proc. 9th. Symposium on Operating Systems Principles, ACM, pp.
110-119.
Nov. 1983.

[DEMOS87] B. Miller, D. Presotto, M. Powell.
DEMOS/MP: The Development of a Distributed Operating
System.
Software-Practice and Experience, vol. 17, no. 4, pp. 277-290.
Apr. 1987.

[EMBOS] R. Olson.
Parallel Processing in a Message-Based Operating System.
IEEE Software, vol. 2, no.7, pp. 39-49.
July 1985.

[EQUUS89a] A. P. Sherman, T. Kindberg.
Horsebox.
Parallelogram, no. 14, pp. 18-19.
May 1989.

[EQUUS89b] D. Pountain.
Equus: A Parallel Operating System.
Byte, pp. 80IS-3 - 80IS-8.
Sep. 1989.

[EQUUS90] T. Kindberg.
Making Waves: Computation Dynamics on a Processor Pool.
Proc. Microsystem Design Show, pp. E/2/1 - E/2/15.
1990.

 144

[FIREFLYRPC] M. Schroeder, M. Burrows.
Performance of Firefly RPC.
Proc. 12th Symposium on Operating System Principles, ACM, pp.
83-90.
Dec. 1989.

[HAGMANN] R. Hagmann.
Process Server: Sharing Processing Power in a Workstation
Environment.
Proc. 6th. Int. Conf. Distributed Computing Systems, Vambridge,
Mass., pp. 260-267.
May 1986.

[HAMILTON] A. Hamilton
A Transputer Farm Accelerator for Networked Computing
Facilities
INMOS Technical Note 54, INMOS Ltd.
Sep. 1988

[HELIOS] The Helios Operating System, Perihelion Software, Prentice Hall.
1989

[HEWITT] C. Hewitt.
Viewing Control Structure as Patterns of Passing Messages.
Artificial Intelligence, vol. 8, no. 3, pp. 323-364.
June 1977.

[HILTUNEN] M. Hiltunen.
Building Fault-Tolerant Programs with Equus.
Tech. Report, Dept. of Computer Science, University of
Helsinki.
June 1990.

[HPC] T. Le Blanc, S. Friedberg.
HPC: A Model of Structure and Change in Distributed
Systems.
IEEE Trans. Computers, vol. C-34, no. 12, pp. 1114-1129.
Dec. 1985.

[ISIS] K. Birman, T. Joseph.
Exploiting Replication in Distributed Systems.
Chapter 15 of Distributed Systems, S. Mullender ed., acm press,
pp. 319-367.
1989.

 145

[ISSOS] K. Schwan, R. Ramnath, S. Vasudevan, D. Ogle.
A system for Parallel Programming.
Proc. 9th. Int. Conf. on Software Engineering, IEEE, pp. 270-282.
1987.

[JONES] A. Jones.
The Object Model: a Conceptual Tool for Structuring Software.
Operating Systems: an Advanced Course, LNCS vol 60, Springer-
Verlag.
1979.

[KAASHOEK] M. Kaashoek, A. Tanenbaum, S. Flynn Hummel, H. Bal.
An Efficient Reliable Broadcast Protocol.
Operating Systems Review, vol. 23, pp. 5-19.
Oct. 1989.

[LADY] D. Wybranietz, R. Massar.
An Overview of LADY - a Language for the Implementation
of Distributed Operating Systems.
Tech. Report 12/85, SFB 124, University of Kaiserslautern.
1985.

[LEUNG] C. Leung.
The Survival Worm.
Tech. Report, Polytechnic of Central London.
Dec. 1987.

[LINDA] S. Ahuja, N. Carriero, D. Gelernter.
Linda and Friends.
IEEE Computer, vol 19, no. 8, pp. 26-34.
Aug. 1986

[LOCUS] G. Popek, B. Walker.
The LOCUS Distributed System Architecture, MIT Press.
1985.

[LYNX] M.L Scott.
Language Support for Loosely Coupled Distributed Programs.
IEEE Transactions on Software Engineering, vol. SE-13, no. 1, pp.
88-103.
Jan. 1987.

[MACH] A. Tevanian, Jr.
MACH: A Basis for Future UNIX Development.
Tech. report CMU-CS-87-139, Carnegie-Mellon University,
USA.
1987.

 146

[MC68030] MC68030 User's Manual, Motorola Inc.
1987.

[MOSa] A. Barak, A. Litman.
MOS: A Multicomputer Operating System.
Software Practice and Experience, vol. 15(8), pp. 725-737.
Aug. 1985.

[MOSb] A. Barak, A. Shiloh.
A Distributed Load-balancing Policy for a Multicomputer.
Software Practice and Experience, vol. 15(9), pp. 901-913.
Sep. 1985.

[NICHOLS] D. Nichols.
Using Idle Workstations in a Shared Computing Environment.
Proc. 11th. Symposium on Operating System Principles, ACM, pp.
5-12.
Nov. 1987.

[NI] L. Ni, C-W. Xu, T. Gendreau.
A Distributed Drafting Algorithm for Load Balancing.
IEEE Transactions on Software Engineering, vol. SE-11, no. 10,
pp. 1153-1161.
Oct. 1985.

[OCCAM] occam 2 Reference Manual, INMOS document number 72 occ 45
02, Prentice Hall International.
1988.

[ORCA] H. Bal, A. Tanenbaum.
Distributed Programming with Shared Data.
IEEE Conf. on Computer Languages, IEEE, pp. 82-91.
1988.

[POOL] P. America.
Definition of the Programming Language POOL-T.
Doc. no. 0091, Project 415, Philips Research Laboratories,
Netherlands.
1986.

[ROSCOE] M. Solomon, R. Finkel.
The Roscoe Distributed Operating System.
Proc. 7th. Symposium on Operating System Principles, ACM, pp.
108-114.
Dec. 1979.

 147

[RPC] A. Birrell, B. Nelson.
Implementing Remote Procedure Calls.
ACM Trans. on Computer Systems, vol. 2, ACM, pp. 39-59.
1984.

[SAHINER] A. Sahiner.
Self-Adapting Parallel Servers.
Tech. Report QMW/CPC/AVS/2, Centre for Parallel Computing,
Queen Mary and Westfield College, University of London.
Sep. 1990.

[SHAPIRO] M. Shapiro.
Structure and Encapsulation in Distributed Systems: the Proxy
Principle.
Proc. 6th. International Conf. on Distributed Computer Systems,
IEEE, pp. 198-204.
1986.

[SHERMAN] A. Sherman.
The Equus Pool Manager - a Technical Overview.
Tech. Report, Zebra Parallel Ltd.
Mar. 1989.

[SPRITE] J. Ousterhout, A. Cherenson, F. Douglis, M. Nelso, B. Welch.
The Sprite Network Operating System.
IEEE Computer, vol. 21, no. 2, pp. 23-36.
Feb. 1988.

[TRANSPUTER] The Transputer Databook, INMOS document number 72 TRN
203 00, INMOS Ltd.
1988.

[UNIX] D. Ritchie, K. Thompson.
The UNIX Time Sharing System.
Communications of the ACM, vol 17, no. 7, pp. 365-375.
July 1974.

[V84] D.R. Cheriton, W. Zwaenepoel.
The V Kernel: A Software Base for Distributed Systems.
IEEE Software, vol. 1, no. 2, pp. 19-42.
Apr. 1984.

[V85] M. Theimer, K. Lantz, D. Cheriton.
Pre-emptible Remote Execution Facilities for the V-system.
Proc. 10th. Symposium on Operating System Principles, ACM, pp.
2-12.
Dec. 1985.

 148

[V88] D. Cheriton.
The V Distributed System.
Communications of the ACM, vol 31, no. 3, pp. 314-333.
Mar. 1988.

[WEIHL] W. Weihl.
Remote Procedure Call.
Chapter 4 of Distributed Systems, S. Mullender ed., acm press,
pp. 65-86.
1989.

[WORMOS87a] T. Kindberg, A.V. Sahiner, Y.Paker.
Worm Programs.
Distributed Operating Systems: Theory and Practice, (ed. Y. Paker
et al), NATO ASI Series, vol F28, Springer-Verlag, pp. 355-379.
1987.

[WORMOS87b] A.V. Sahiner, T. Kindberg, Y.Paker.
A Distributed Architecture for Image Programming.
Proc. British Computer Society Parallel Architectures and Computer
Vision Workshop, Oxford, pp. 187-199.
Mar. 1987.

[WORMS] J. Shoch, J. Hupp.
The 'Worm' Programs - Early Experience with a Distributed
Computation.
Communications of the ACM. vol. 25, no. 3, pp. 172-280.
Mar. 1982.

[ZAYAS] E. Zayas.
Attacking The Process Migration Bottleneck.
Proc. 11th. Symposium on Operating System Principles, ACM, pp.
13-24.
Nov. 1987.

 149

Appendix A

Performance

This appendix describes experiments made to measure the performance of the

implementation. Experiments were performed to measure communications times,

migration times and the overhead due to communications reconfigurations.

The measurements are given as a guide only, to judge gross system performance.

Efficiency was one of the goals of the design, but no attempt has been made to

optimise the implementation.

The processor cards used in these experiments are based on Motorola 68030s

running at 20 MHz. The cards are based on a 68020 design, which was not

optimised for the 68030. In particular, the 68030's burst mode data access capability

was not exploited in the card's design. The VME bus system clock runs at 16 MHz.

The system call inc_time is used in the communications experiments to determine

elapsed times. The kernel handles timer interrupts at a rate of 60 Hz, and therefore

the timing resolution is only about 17 milliseconds. In each experiment the action to

be timed is therefore performed multiply, to reduce the indeterminacy per action.

Variations were found in the values measured for repeats of the same

experiment. Factors which may account in part for variations in the recorded values

in any of the experiments described here are:

• lack of clock accuracy. In addition to the clock's intrinsic lack of resolution,

clock interrupts are suspended during certain kernel operations, to ensure that

atomic updates are made to kernel data.

• the card running Unix accesses the disc over the shared VME bus. Unix-related

activities which could not be suppressed, such as superblock updates, may

compete for the bus with the test incarnations in some experiments.

• the kernel's time daemon process runs essential maintenance procedures

periodically. In practice these run at different times in relation to each

experiment, since the starting points of the experiments were not synchronised

with the time daemon.

 150

A.1 Invocation Timings

Table A.1 shows the results of experiments made to measure the cost to an

incarnation of making the various types of invocation call. The times are shown

graphically in Figures A.1 and A.2. In each experiment a sending incarnation makes

the same invocation call iteratively in a simple loop. A corresponding incarnation at

a different node calls inc_receive in a simple loop. No other incarnation is active

during the course of the experiments.

In each experiment (apart from those measuring inc_dgram – see Table A.1) the

sender makes the invocation call 1000 times, thus reducing the indeterminacy per

call due to the clock resolution to about 0.02 milliseconds. The recorded results are

average values taken from the elapsed times, with 10 experiments made in each

case. The figures in brackets are the standard deviations of the results.

For comparison when considering bulk data transfer rates, a C loop employing

register variables to copy data between nodes in four-byte units (kernel-to-kernel)

achieves a maximum data transfer rate of 2.6 megabytes per second.

inc_invoke

In the first experiment, inc_invoke is called by the sender, and the receiver does not

make an explicit reply (Table A.1, first row). The time per call is 2.3 milliseconds if

no extra data and no references are sent with the invocation message. If extra data

are sent, the data transfer rate is 0.4 megabytes per second for 1 kilobyte, and 2.5

megabytes per second for 64 kilobytes of extra data.

 151

The difference in transfer rates is to be expected, because invocation message

delivery has a fixed and non-negligible overhead due to kernel message

preparation, transmission and acknowledgement. Once a message header has been

delivered, however, transferring extra data over the VME bus is relatively cheap.

There is a limit of 64 kilobytes on the size of data which the kernel copies from a

single message over the VME bus, so as to prevent a process from hogging the bus.

primitive 0 extra

bytes

1k 32k 64k

inc_invoke

(no reply by rcvr)

2270

(22)

2771

(13)

13957

(14)

25480

(10)

inc_invoke (R)

(rcvr replies)

2863

(22)

3377

(25)

14570

(21)

26100

(15)

inc_invoke

(rcvr replies;

stream each way)

3288

(31)

- - -

inc_asinvoke 3860

(11)

4430

(18)

14783

(20)

25493

(24)

inc_send
2098

(14)

3553

(7) - -

inc_dgram
940 [x500]

(7)

1374

[x250]

(8)

- -

inc_send (M)

 (multicast to 2

receivers)

3228

(127)

14537

(10)

inc_dgram

(multicast to 2

receivers)

2494

[x250]

(8)

- - -

Each entry gives the average over 10 experiments of the elapsed times for 1000 calls, in milliseconds.
Standard deviations are given in round brackets. In the case of inc_dgram, the number of calls made
in each experiment was lower because of buffering restrictions. The actual number of calls made is
given in square brackets. The values given for inc_dgram have been muliplied by the appropriate
factor to obtain a figure for 1000 calls.

Table A.1: Invocation Times Between Nodes.

 152

A single inc_invoke call can therefore transfer up to this amount of data with a total

of only two associated kernel messages (one for the invocation message, one for the

reply or acknowledgement). If the extra data exceeded this size, the transfer would

involve the transmission of further kernel messages.

In the second experiment the receiver replies (using inc_reply), but without extra

data or a reference (Table A.1, second row). The time per call is increased by 0.6

milliseconds to 2.9 milliseconds. The data transfer rate at 1 kilobyte of extra data

drops to 0.3 megabytes per second, and to 2.4 megabytes per second when 64

kilobytes of extra data are sent in the inc_invoke call.

In the third experiment, a stream is propagated in the invocation message and

the reply message (Table A.1, third row). No extra data are sent in either direction.

The stream used for propagation is destroyed each time, so that the system limit on

the number of streams held by a single incarnation is not exceeded. From the

0 200 400 600 800 1000 1200

0

2

4

6

8

10

12

14

16

inc_invoke

inc_invoke (R)

inc_asinvoke

inc_send

inc_dgram

inc_send (M)

Extra Data Size (bytes)

T
im

e
p

er
 I

n
vo

ca
ti

on
 (

m
il

li
se

co
n

d
s)

Data taken from Table A.1. (R) = with reply; (M) = multicast to two nodes.

Figure A.1: Invocation Times Between Nodes (0-1k Extra Data).

 153

figures in the second and third rows of Table A.1, the overhead of propagating a

stream in a message using inc_invoke or inc_reply (assumed to be the same in each

case) is (3.3 - 2.9)/2 = 0.2 milliseconds. The additional overhead due to propagating

any other type of reference other than a port in a message is expected to be similar to

the value for a stream, since similar processing is involved. Also, this overhead is

expected to be similar across the different invocation calls for the same reason.

inc_asinvoke

In the experiments using inc_asinvoke (Table A.1, fourth row), a buffer limit of one

was used, with the consequence that each attempt to make the call would be blocked

until the previous invocation had been completed. This buffer limit is expected to

produce a worst case for the sender's asynchronous performance (if the buffer limit

is zero, sending is effectively synchronous). The time with no extra data sent is 3.9

milliseconds, and with 64 kilobytes of extra data the transfer rate is 2.5 megabytes

per second. When an invocation message is received, the receiver's kernel sends a

message to the sender's kernel informing the latter of completion. The sender's

0 20 40 60 80

0

5

10

15

20

25

30

inc_invoke

inc_invoke (R)

inc_asinvoke

Extra Data Size (kilobytes)

T
im

e
p

er
 I

n
v

oc
at

io
n

 (
m

il
li

se
co

n
d

s)

Data taken from Table A.1. (R) = with reply.

Figure A.2: Invocation Times Between Nodes (0-64k Extra Data).

 154

kernel has to acknowledge this. This accounts for the large difference between the

first figure (no extra data) and the comparable figures for inc_invoke. The

experiment with no extra data was made for comparison only. inc_asinvoke is only

intended for sending bulk data asynchronously.

inc_send and inc_dgram

When used over a unicast channel, inc_send is the fastest reliable invocation call for

messages with no extra data, at 2.1 milliseconds (Table A.1, fifth row). With 1

kilobyte of extra data, the time rises to 3.6 milliseconds. Extra data sent using

inc_send or inc_dgram is copied twice: once at the time of the call, and once at the

time of reception. This probably accounts for the fact that inc_invoke is faster than

inc_send with 1 kilobyte of extra data.

Buffering limitations restricted the number of times inc_dgram could be called in

each experiment (Table A.1, sixth row). At 0.9 milliseconds and 1.4 milliseconds for

0 and 1 kilobytes of extra data respectively (over a unicast channel) inc_dgram is

considerably faster than the other primitives. No messages were dropped in the

experiments using this call – in either the unicast or multicast case.

The figures for inc_send and inc_dgram sending to two receiving incarnations

over a multicast channel show a marked drop in performance over the unicast case

(Table A.1, last two rows). This is to be considered in the light of the following

points regarding the implementation. Each multicast has to be achieved using a

point-to-point transmission to each node running the Equus kernel (an attempt has

been made to make these transmissions overlap to some extent, however). And

every node has to process the multicast message, even though only two accept it for

delivery to local kernel ports.

Intra-node Invocations

Table A.2 shows the results of experiments in which the sender and receiver reside

at the same host node. It may seem surprising that some figures recorded with 0 or

1 kilobyte of extra data are actually higher than corresponding figures between

incarnations at different nodes. This is probably due to an attempt to optimise the

scheduler, by which a process awaiting a low-level event is not descheduled unless

there is another process ready to run. A process switch is thereby avoided if the

waiting process is the next to be made ready to run. This optimisation is brought

into effect when two nodes are used: the only other process which might run when

the sender is blocked is the time daemon. When the same node is used, however,

 155

the receiver and the sender are alternately the current, executing process. A full

context switch is required every time this alternation occurs.

The times in milliseconds for 1000 calls of inc_copyto and inc_copyfrom between incarnations residing
at different nodes. The average value over ten experiments is given, with the standard deviation
given in brackets.

Table A.3: Times to Copy Data Asynchronously Between Nodes.

inc_copyto and inc_copyfrom

Table A.3 shows the times taken for 1000 calls of inc_copyto and inc_copyfrom, each

averaged over 10 experiments. The figures are close to those for inc_invoke with no

explicit reply (Table A.1). This is to be expected, since the calls involve a similar

exchange of a single kernel message in each direction. Data copying takes place

after the request is received, just before an acknowledgement is generated. In the

case of inc_copyto and inc_copyfrom, a ghost process handles the request; in the case

of inc_invoke, a system incarnation handles the request.

primitive 0 extra

bytes

1k 32k 64k

inc_invoke

(no reply by rcvr)

2370

(7)

2733

(1)

9022

(8)

15467

(1)

inc_invoke

(rcvr replies)

2918

(9)

3777

(8)

9568

(5)

16007

(22)

inc_asinvoke 3790

(8)

4318

(5)

13536

(7)

23016

(1)

Experimental conditions are the same as for those whose results are given in Table A.1, except that
the sending and receiving incarnations reside at the same node. The average over ten experiments is
recorded in each case. Standard deviations are given in brackets. All figures are in milliseconds.

Table A.2: Invocation Times Between Incarnations at Same Node.

primitive 1k extra bytes 32k

inc_copyto 2802

(9)

13990

(13)

inc_copyfrom 2779

(8)

13240

(8)

 156

A.2 Migration

Table A.4 shows the results of experiments to measure the elapsed time taken to

migrate incarnations of various sizes. In each experiment the incarnation executes a

simple loop to receive messages from a port, to which no messages are sent.

The incarnation is migrated 100 times, over a set of ten nodes at which no other

incarnation executes. The incarnation which migrates it executes at a separate node

which the child never visits.

The elapsed time is measured by the kernel at the migration destination node.

The results of these measurements are supplied via the event mechanism to the

incarnation which migrates the child. The kernel begins timing at the point that the

request to host the incarnation has been validated by the loader, and finishes timing

immediately before the incarnation re-commences execution at the new node. This

time is therefore an upper bound for the freeze time experienced by any incarnation

of the same address space size. The address space components which are included

in the total size are the text, heap, stack and pincdata segments. For convenience,

the sizes of these segments are rounded up to the next multiple of two kilobytes (the

page size).

address space size

(kilobytes)

migration time

(1 port)

migration time

(9 ports)

70 46 (15) 56 (14)

134 73 (24) 79 (14)

196 96 (27) 107 (15)

390 173 (34) 185 (23)

518 223 (40) 234 (22)

1030 419 (43) 426 (19)

Times averaged over 100 migrations (standard deviations in brackets). All times are in milliseconds.
Size is that of text + heap + stack + pincdata, each rounded to next multiple of 2 kilobytes.

Table A.4: Migration Times.

 157

Two sets of experiments were

performed. In the first, the child has nine ports (which happens to be the number

needed for an all-purpose experimentation incarnation), and in the second it has one

port. Each port requires processing during migration. It has to be initialised at the

destination node with a kernel port and a logical address database entry.

0 200 400 600 800 1000 1200

0

100

200

300

400

500

9 ports

1 port

Address Space Size (kilobytes)

M
ig

ra
ti

on
 T

im
e

(m
il

li
se

co
n

d
s)

Figure A.3: Migration Times.

 158

 The results are shown in graphical form in Figure A.3. Linear regression

performed upon these data gives the following relationships:

migration time = 20.27 + 0.388s (1 port)

 30.17 + 0.387s (9 ports)

where s is the total address space size. Together these imply that the overhead

per port is:

 (30.17 - 20.27)/(9 - 1) ~ 1.2 milliseconds.

We then obtain, approximately:

migration time = 19 + 1.2p + 0.39s milliseconds,

where p is the number of ports and s is the total address space size.

Migration is expected to take longer if the incarnation was active during

migration (instead of being blocked in an inc_receive call). This is because the ghost's

activities in performing the migration would be interleaved with the execution of

the incarnation, until its heap segment was requested (see Section 7.4). The ghost

runs at a higher scheduling priority than the system incarnation, however, so

degradation is expected to be slight.

If messages were sent to the migrating incarnation in these experiments, then this

would be expected to degrade migration performance, since any attached or arrived

messages have to be forwarded from the source node.

A.3 Changing the Receiver

The following experiments involve an incarnation making invocations which are

received alternately by two receiver incarnations. The experiments are designed to

measure the overheads which are incurred by the sender as a result of the

reconfigurations which alter the receiver. Measurements are taken for the three

mechanisms of port propagation, port attachment and stream rebinding. The results

are given in Table A.5.

The same sending incarnation used in the invocation timing experiments is

employed. In this case, however, the sender makes 10,000 calls to inc_send. Each call

sends a simple message with no reference or extra data. In each experiment 100

 159

reconfigurations take place, and approximately 100 invocation messages are

received by each receiver before the sender is re-connected to the other one.

The receiving incarnations are different to those used in the invocation timing

experiments. This is reflected in the time measured for the case of no

reconfigurations, which is slightly larger than an extrapolation from the

measurement for 1,000 inc_sends would suggest (Table A.5, first row). The sender

records a sequence number in the header of the invocation messages, and the

receivers record the gaps they find in the sequence numbers of the messages they

receive. This information is used to confirm the number of reconfigurations that

take place, and to check that messages are not lost or duplicated as a result of the

reconfigurations. A second difference from the receivers in the invocation timing

measurements is that they set a timeout for each inc_receive call. This is so that each

receiver eventually times out when the sender has finished, and reports the gaps in

message sequence numbers it detected.

In each experiment, the queue of messages at the current receiver's port is

forwarded. The kernel keeps track of the total number of acknowledged messages

which it forwards to the other port in each experiment. The forwarding of messages

which have already been acknowledged is carried out reliably (see Section 8.5). The

experiment elapsed

send time

no. of

reconfig-

urations

no. of

messages

forwarded

overhead

to sender

per reconf.

no reconfigurations

21897 (35) 0 0 0

port propagation

22897 (145) 100 201 (2) 10

port attachment

22713 (241) 100 84 (9) 8.2

stream rebinding

22635 (183) 100 77 (17) 7.4

Times are for 10,000 calls to inc_send made by one sender to two receiving incarnations in alternation.
Invocation messages queued at the current receiver's port are forwarded to the other receiver. The
figures given are averages taken over ten experiments for each case. Standard deviations are shown
in brackets. All times are in milliseconds.

Table A.5: Communications Reconfiguration Measurement Results.

 160

kernel may, additionally, forward a pending message during a reconfiguration. An

experiment to account fully for the total time spent during a reconfiguration would

have to record whether a pending message was forwarded. This was omitted for

lack of time available to make these experiments. There could be at most one

pending message per reconfiguration in these experiments (since there is only one

sender); and forwarding a pending message can be expected to take less than half

the time it takes to forward an acknowledged message.

Port Propagation

In this experiment each receiver:

1] Receives 100 messages from the current receive port.

2] Propagates its port in a message with no extra data to the other incarnation. It

uses inc_send for this (inc_invoke could have been used), over a stream

connected to the other's swap port. A flag is set in the message's reference

descriptor to cause the destruction of the port upon propagation (and therefore

the forwarding of the message queue).

3] Receives a new receive port in a message, using its swap port.

4] Repeats the above from step 1.

Comparing the elapsed send times for this case and the case in which no

reconfigurations take place (Table A.5), the overhead to the sender per

reconfiguration is:

 (22897 - 21897)/100 = 10 milliseconds.

On average:

 201/100 ~ 2 acknowledged kernel messages are forwarded per

reconfiguration.

Port attachment

In this experiment, a manager incarnation (separate to the sender and receivers)

performs a port attachment operation affecting the two receivers (inc_attachPort).

The receivers remain in a receiving loop and do not actively take part in the

reconfigurations. The manager pauses between the reconfiguration operations. The

duration of this pause was determined heuristically so that 100 reconfigurations

 161

were performed altogether whilst sending continued, and so that the last took effect

just before sending stopped. This meant that about 100 messages were received by a

receiver each time before a reconfiguration took place.

Comparing the elapsed sending times from Table A.5, the overhead to the sender

per reconfiguration is:

 (22713 - 21897)/100 ~ 8.2 milliseconds.

On average:

 84/100 ~ 0.8 acknowledged kernel messages are forwarded per

reconfiguration.

The total number of messages forwarded is less than when port propagation was

used. This is to be expected, because in the latter case messages are given time to

arrive while the port is propagated in a user-level message and the receiver

incarnation does not attempt to receive. With port attachment, the receiver is active

up to the point when the reconfiguration operation takes effect.

Stream Rebinding

This experiment is the same as the last, except that the manager incarnation

performs a stream rebinding operation instead of a port attachment operation.

Comparing the elapsed sending times from Table A.5, the overhead to the sender

per reconfiguration is:

 (22635 - 21897)/100 ~ 7.4 milliseconds.

On average:

 77/100 ~ 0.8 acknowledged kernel messages are forwarded per

reconfiguration.

 162

Appendix B

Equus Calls

This appendix gives a brief description of each of the basic Equus-specific calls

available to the RDC programmer. There are around 60 calls, but there are only 30

system calls handled by the Equus kernel. This is because a number of Equus calls

share one or more underlying system calls to which they provide their own

distinguishing arguments. In this case the system call may have no other utility and

is not defined as part of the system interface.

The relevant structure definitions are first defined. The calls are then described

in groups according to their functionality.

B.1 Definitions

/* INCARNATION CREATION */

/* node allocation entry */

typedef struct {

 unsigned int ne_node; /* node identifier */

 unsigned int ne_load; /* node's processing load */

} NodeEntry;

/* structure used to specify interfaces to child */

typedef struct {

 unsigned int ii_flags; /* pertain to interface creation */

 RefDescrip ii_ref; /* child's interface */

 char ii_chanlabel[20]; /* channel label */

 char ii_hanlabel[20]; /* handle label */

} IncInterface;

/* parameters supplied to child */

typedef struct {

 int ip_datasize; /* size of data arguments in bytes */

 163

 char *ip_dataargs; /* pointer to data arguments */

 int ip_nifaces; /* # of interfaces */

 IncInterface *ip_ifaces; /* array of interface descriptors */

} IncParams;

/* Structure provided to inc_create */

typedef struct {

 unsigned int ic_state; /* INCHOATE/STARTED */

 IncParams ic_params; /* decaration of child's parameters */

} IncCreateParams;

/* COMMUNICATIONS */

/* specify buffer in local inc's address space */

typedef struct {

 char *bf_base; /* start of buffer */

 unsigned int bf_cnt; /* # of bytes in buffer */

} Buf;

/* specify buffer in remote inc's address space */

typedef struct {

 int ab_bufhandle; /* handle on remote buffer */

 unsigned int ab_cnt; /* # bytes in remote buffer */

} AlienBuf;

/* reference identifier */

typedef union {

 unsigned int oi_inc; /* incarnation handle */

 int oi_stream; /* stream */

 int oi_port; /* port */

 int oi_streamhandle; /* stream handle */

 Buf oi_buf; /* local buffer */

 AlienBuf oi_alienbuf; /* alien buffer */

} Objectid;

 164

/* reference descriptor */

typedef struct {

 unsigned char rd_type; /* type of reference */

 Objectid rd_obj; /* local name/descrip of ref */

 unsigned int rd_keep: 1; /* 1 iff keep ref on propagation */

 unsigned int rd_domain: 3; /* propagation restriction */

 unsigned int rd_flags: 28; /* type-specific flags */

} RefDescrip;

/*message structure */

typedef struct {

 char m_head[32]; /* header */

 RefDescrip m_ref; /* ref to propagate */

 unsigned int m_cnt; /* # bytes extra data sent out */

 unsigned int m_nreply; /* # bytes in reply */

 char *m_base; /* buffer for extra data */

} Msg;

/* structure to get info about msgs from selected streams using inc_testPort */

typedef struct {

 int sm_smhan; /* stream handle */

 int sm_nmsgs; /* no. msgs arrived from stream */

} SelectMessages;

/* EVENTS & INCARNATION STATUS */

/* Structure describing events */

typedef struct {

 unsigned int ed_reference; /* reference identifier */

 unsigned int ed_evtype; /* event type */

 unsigned int ed_info1; /* extra info */

 unsigned int ed_info2; /* extra info */

} EvDesc;

 165

/* structure describing incarnation state */

typedef struct {

 unsigned short is_state; /* state of incarnation */

 unsigned short is_load; /* load due to inc. */

 unsigned int is_node; /* location of inc */

 unsigned int is_usertime; /* time executing user code so far */

 unsigned int is_systime; /* time executing sys code so far */

 unsigned int is_realtime; /* total elapsed time since creation */

 unsigned short is_ntext; /* no. of pages of program text */

 unsigned short is_nheap; /* no. of pages of program heap */

 unsigned short is_nstack; /* no. of pages of program stack */

 unsigned char is_npinc; /* no. of pages of pincdata */

 unsigned char is_nmsgs; /* no. of arrived invocation messages */

} IncState;

/* local incarnation times returned by inc_time */

typedef struct {

 unsigned int tb_sys; /* system time */

 unsigned int tb_user; /* user time */

 unsigned int tb_elapsed; /* elapsed time */

} TimeBuf;

B.2 Incarnation Creation

inc_nodes(nnodes, node_list)

int nnodes;

NodeEntry *node_list;

This returns in nodes_list up to nnodes entries giving the caller's RDC's node

allocation (their identifiers and states of loading). It returns the number of entries

filled in.

inc_getModByName(modname)

char *modname;

This returns the non-negative integer identifier of a module from its null-terminated

character string name given by modname.

 166

inc_create(blueprint, node, inchan_p, stream_p, create_params_p)

unsigned int blueprint

unsigned int node;

unsigned int *inchan_p;

int *stream_p;

IncCreateParams *create_params_p;

blueprint is either a module identifier or the incarnation identifier of a frozen,

INCHOATE incarnation created by a previous call to inc_create. node specifies

where the new incarnation is to be created, and stream_p is used to return the

identifier of a stream to the new incarnation's standard port, inchan_p that of the

new incarnation's handle. create_params_p points to a data structure which must be

set to determine the new incarnation's initial state (STARTED or INCHOATE); its

data arguments; and a declaration of its interface arguments.

ss_isStream(iface_p, chan_label, handle_label)

IncInterface *iface_p;

char *chan_label, *handle_label;

This stipulates a stream interface for a child, using the structure pointed to by

iface_p. The stream is to be attached to a channel labelled by the null-terminated

character string chan_label. If non-NULL, handle_label is to point to a character string

label: a stream handle referring to the new stream is be deposited in stream space

with the given label.

ss_isPort(iface_p, do_create, chan_label, handle_label)

IncInterface *iface_p;

int do_create;

char *chan_label, *handle_label;

This stipulates a port interface for a child, using the structure pointed to by iface_p.

The new port is to be attached to a channel labelled with chan_label. If do_create is

CHAN_NEW, a new channel is to be created and a stream attached to the channel is

to be deposited in stream space with the character string label chan_label. The new

port is to be attached to this channel. Otherwise it is to be attached to a channel

created by another declaration. If non-NULL, handle_label is to point to a character

string label: a port handle referring to the new port is be deposited in stream space

with the given label.

 167

ss_createChan(chan_label, stream_p, port_p, chan_type)

char *chan_label;

int *stream_p, *port_p;

int chan_type;

This creates a channel. The new channel is to be of type chan_type

(CHAN_UNICAST or CHAN_MULTICAST), and a stream attached to it is

deposited in stream space with the label chan_label. If non-NULL, stream_p and

port_p are used to return the identifiers of a stream and port respectively, attached to

the new channel.

inc_paramRef(incparams_p, interface_index)

IncParams *incparams_p;

int interface_index;

This is a utility to extract and return the identifier of the reference of the interface

with index interface_index referenced in a child's parameters given by incparams_p.

inc_fork(node, inchan_p, nports, ports_list, stream_list)

unsigned int node;

unsigned int *inchan_p;

int nports;

int *ports_list;

int *streams_list;

This forks a copy of the calling incarnation to node node, returning the new

incarnation's identifier using inchan_p. The identifiers of ports to be attached in the

forked child have to be supplied in ports_list. Ports attached to a multicast channel

must have the corresponding stream entry set to the identifier of a stream attached

to the channel. When the call returns in the parent, the corresponding entries in

streams_list are filled with the identifers of streams attached to the new channels.

 168

B.3 Stream Space

ss_put(label, refp, ncopies)

char *label;

RefDescrip *ref_type;

int ncopies;

ss_get(label, refp)

char *label;

RefDescrip *ref_type;

ss_return(label, keepqueue)

char *label;

int keepqueue;

ss_put puts into stream space the reference described in type and identifier by refp

with label label. The reference is kept by default, but this can be overridden in the

case of a port. ncopies is either SS_UNLIMITED – an unlimited number of copies can

be taken out and will be cached; SS_DONTCACHE – an unlimited number of copies

can be taken out, but will not be cached by the run-time system; or a positive

integer. The latter case is used to specify that at most this number of copies can be

obtained simultaneously from stream space.

Copies are obtained using ss_get, which returns the type and identifier of the

reference it has obtained, using refp. When only a limited number of copies can be

taken out, they are replaced in stream space using ss_return. Keepqueue is examined

only in the case of propagating a unicast port. If TRUE, the incarnation calling

ss_return retains the port.

ss_delete(label)

char *label;

This deletes from stream space any entry with the label label. This does not delete

cache entries, however.

ss_print()

This prints onto the standard output the contents of stream space.

 169

B.4 Communications

B.4.1 Message Passing

inc_invoke(stream, msg)

int stream;

Msg *msg;

Send the message msg down stream stream and optionally get a reply, overwriting

first two fields of msg and possibly the messages's extra data block.

inc_asinvoke(stream, msg)

int stream;

Msg *msg;

Send the message msg down stream stream. This time no reply can be given, but the

message can contain arbitrarily much extra data which is sent asynchronously from

the caller's address space – the buffer should not be overwritten whilst it is in use by

the system.

inc_send(stream, msg)

int stream;

Msg *msg;

Send the message msg down stream stream. This time no reply can be given, and the

block of extra data cannot be larger than a system-defined amount (1.5K bytes). In

this case, however, the extra data is copied from the caller's address space before the

call completes, so the user need not be involved in buffer management.

inc_dgram(stream, msg)

int stream;

Msg *msg;

Send the message msg down stream stream. This call is the same as inc_send except

that message delivery is unreliable.

 170

inc_receive(port, msg, block_invoker, selector, timeout)

int port;

Msg *msg;

int block_invoker;

int selector;

int timeout;

Receive a message into the message buffer msg using the port port. If block_invoker is

non-zero, a caller of inc_invoke is blocked until the receiver issues a call to

inc_reply using the reply handle returned from inc_receive. Otherwise the invoker

is unblocked implicitly, and its message data is not overwritten with a reply

message. If selector is a valid stream handle identifier, the call will attempt to receive

only a message sent using the stream referenced by this stream handle. If timeout is

negative, inc_receive waits indefinitely for an invocation message to arrive. If it is

zero, it receives a message if one is currently available, and otherwise returns

immediately. If positive, it is the maximum number of milliseconds the call is to

wait until a message arrives. A return value of 0 indicates no messages were

received, of 1 indicates a message was received, and a positive value greater than 1

is the identifier of a returned reply handle.

inc_reply(reply_handle, msg)

int reply_handle;

Msg *msg;

Reply to an inc_invoke caller referenced by reply_handle (obtained from

inc_receive). The message msg is sent back in replying, and overwrites the

invoker's. An extra data block can be present in the reply message, as can a

reference. On obtaining the reply message, the invoker is unblocked.

inc_forward(stream, reply_handle, msg)

int stream;

int reply_handle;

Msg *msg;

Forward the message whose receipt returned reply_handle down the stream stream

(which must be attached to a unicast channel). The forwarded message data and

reference is an exact copy of that received, except that its data in the m_head field is

overwritten by that of *msg.

 171

B.4.2 Data copying

inc_copyto(buffer_handle, offset, data, nbytes)

inc_copyfrom(buffer_handle, offset, data, nbytes)

int buffer_handle;

unsigned int offset;

char *data;

unsigned int nbytes;

buffer_handle refers to a buffer in another incarnation's address space, and these two

calls copy data to/from it (starting at offset offset) from/to the caller's local buffer

(address data, size nbytes).

B.4.3 Auxiliary Calls

inc_testPort(port, nheaders, header_array, nselect, select_array)

int port;

int nheader;

char *header_array;

int nselect;

SelectMessages *select_array;

This call returns the number of messages at the port port. It also a) copies up to

nheader bytes of arrived message headers in the array header_array, and b) fills up to

nselect entries in select_array with the number of arrived messages at the port port

originating from the streams to which stream handles supplied in these entries refer.

inc_setBufferLimit(stream, limit)

int stream;

int limit;

This call sets the buffer limit associated with stream stream to be limit, which must be

positive. This value determines conditions under which a call to inc_asinvoke will

block.

 172

B.5 Channels, Streams and Ports

inc_chanCreate(chantype, stream_p, port_p)

int chantype;

int *stream_p;

int *port_p;

This creates a new channel of type chantype. chantype can be CHAN_UNICAST or

CHAN_MULTICAST. It returns the identifiers of a stream and a port attached to it,

using stream_p and port_p .

inc_portCreate(stream)

int stream;

This creates a new port attached to the same channel as the stream stream. If

successful, the identifier of the new port is returned.

inc_hanCreate(stream_or_port)

int stream_or_port;

This creates and returns the identifier of a stream or port handle referring to the

stream or port stream_or_port.

B.6 Reconfiguring Communications

inc_rebindStream(stream_handle, stream, port)

int stream_handle;

int stream;

int port;

This rebinds the stream referenced by stream_handle with the stream stream. If port

is not NO_PORT and is a valid port or port handle identifier, then the call forwards

any messages which have already arrived from the stream referenced by

stream_handle at the port referred to by port, before this rebinding takes place.

 173

inc_attachPort(newport, oldport, stream, move_q)

int newport;

int oldport;

int stream;

int move_q;

This attaches the port referred to by newport to the channel referred to by stream, and

optionally detaches the port oldport from the same channel. If move_q is TRUE, then

any messages queued at oldport which have arrived over this channel are first

forwarded to newport. oldport and newport may be referred to either by a local port

identifier or a port handle.

inc_freezeStream(stream_handle)

inc_unfreezeStream(stream_handle)

int stream_handle;

inc_freezeStream causes any attempts to send invocations using the stream

referenced by stream_handle to cause the invoker to block before sending the

invocation (an invocation being made at the time of this call is allowed to complete).

Such an invoker can only be unblocked by a call to inc_unfreezeStream.

B.7 Control

inc_makeDependent(child, type)

unsigned int child;

int type;

This call makes the incarnation child dependent upon the caller. If type is

DEP_ABSOLUTE the child will be made absolutely dependent on the caller; if it is

DEP_GROUP it will be made group-dependent upon it; if it is DEP_NONE, any

dependency is cancelled.

 174

inc_status(child, statep)

unsigned int child;

IncState *statep;

inc_status returns one of the values INC_IS_EXECUTING, INC_IS_FROZEN,

INC_IS_FAULTING, INC_IS_UNSREACHABLE in statep->is_state If child is not

unreachable, it fills in the fields of *statep with relevant information.

inc_nodeAlloc(node, rdcid)

unsigned int node;

unsigned int rdcid;

This causes the node node to be allocated to the RDC whose identifier is rdcid. This

call can only be successfully called by RDCs launched as system RDCs.

inc_nodeWithdraw(node, rdcid, kill)

unsigned int node;

unsigned int rdcid;

int kill;

This causes the node node to be withdrawn from the RDC whose identifier is rdcid. If

kill is TRUE, any incarnations belonging to the RDC and not migrating away from

the node are destroyed automatically on withdrawal. This call can only be

successfully called by RDCs launched as system RDCs.

inc_destroy(child)

unsigned int child;

Terminate the incarnation child.

inc_freeze(child)

unsigned int child;

Freeze the execution of the incarnation child.

 175

inc_unfreeze(child, priority)

unsigned int child;

unsigned int priority;

Unfreeze the execution of the incarnation child. It is to re-commence execution at

local timeslicing priority priority.

inc_migrate(child, node)

unsigned int child;

Migrate the incarnation child to the node node.

B.8 Identification

inc_self()

This returns the caller's incarnation identifier.

inc_where()

This returns the caller's current location.

inc_rdcId()

This returns the caller's RDC identifier.

B.9 Events and Software Interrupts

inc_eventWait(nevents, event_list, timeout)

int nevents;

EvDesc *event_list;

int timeout;

This call awaits or polls for one or more of a list of events to occur. The types of

events of interest are specified using fields in the nevents entries of the array

event_list. Events can concern: a message arriving at a port (EV_PT_HASMSG); a

stream becoming unfrozen so that invocations can take place without blocking for

this reason, or a call to inc_asinvoke completing so another can be made without

blocking (EV_SM_INVOK); a stream being closed (EV_SM_CLOSED); or an event

 176

associated with some related incarnation – the death of a child, etc.

(EV_INC_FAULTING, EV_INC_DEAD, EV_INC_MADE,

EV_INC_MIGRATEDONE). Information about these events is returned in the array

event_list. If timeout is negative, the call waits indefinitely for an event to occur. If

zero, it returns immediately with information about any events which have

occurred. Otherwise it waits for up to the specified positive number of milliseconds

for at least one such event.

 inc_setPortHandler(port, handler, priority)

int port;

void (*handler)();

int priority;

This associates current message and the arrival of future messages at the port port

with the calling of a software interrupt handler, specified by handler. These events

are handled with interrupt priority priority.

inc_setStreamHandler(stream_handle, handler, priority)

int stream_handle;

void (*handler)();

int priority;

This associates the event of closure of the stream to which stream_handle refers with

the calling of a software interrupt handler specified by handler. Such an event is

handled with priority priority.

inc_setIncInterest(set_interest, child, event_type, handler, priority)

int set_interest;

unsigned int child;

int event_type;

void (*handler)();

int priority;

If set_interest is SET_INTEREST, this call causes the incarnation child (which may be

the caller) to notify the caller of events of type event_type. The caller can obtain event

information either with a call to inc_eventWait or through a software interrupt

handler. The call associates the occurence of the events with the calling of a software

interrupt handler specified by handler – if non-NULL – to be run with priority

priority. If the handler is NULL, any previous handler is no longer effective. If

 177

set_interest is UNSET_INTEREST, the handler is unregistered and child ceases to

have notification responsibility.

inc_setInterruptPriority(priority)

int priority;

This call changes the current interrupt priority to priority and returns the old priority

value.

B.10 Other Calls

inc_close(reference)

unsigned int reference;

This closes the reference whose (local) identifier is reference. The identifier becomes

invalid.

inc_testReference(reference)

unsigned int reference;

This returns RT_NONE if there is no reference with the identifier reference.

Otherwise it returns the type of the reference in the lowest 8 bits of the returned

value, and reference-specific type flags in the upper 24 bits.

inc_rdcExit()

This causes the termination of the caller's RDC.

inc_brk(new)

int new;

This is used to emulate the Unix brk() and sbrk() system calls.

inc_sleep(nmillisecs)

int nmillisecs;

This causes the caller to block until nmillisecs milliseconds have elapsed.

inc_time(time_buf)

TimeBuf *time_buf;

This returns in time_buf the current user/system/elapsed times for the caller.

 178

inc_pause()

This does nothing except block the caller until a software interrupt occurs, when it

returns.

